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Abstract This paper presents theory and methods to 
compute genotypic means and covariances in a two- 
breed population under dominance inheritance, assum- 
ing multiple unlinked loci. It is shown that the genotypic 
mean is a linear function of five location parameters and 
that the genotypic covariance between relatives is a 
linear function of 25 dispersion parameters. Recursive 
procedures are given to compute the necessary identity 
coefficients. In the absence of inbreeding, the number of 
parameters for the mean is reduced from five to three 
and the number for the covariance is reduced from 25 to 
12. In a two-breed population, for traits exhibiting 
dominance, the theory presented here can be used to 
obtain genetic evaluations by best linear unbiased pre- 
diction and to estimate genetic parameters by maximum 
likelihood. 
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Introduction 

Crossbreeding is used widely in animal production. One 
of the main purposes of crossbreeding is to take advan- 
tage of the heterosis that is often observed in crossbreds. 
The primary genetic mechanism for heterosis is direc- 
tional dominance of favorable alleles at many loci (Fal- 
coner 1989). In the absence of inbreeding, theory is 
available to model the mean in crossbred populations 
(Dickerson 1973; Hill 1982; Eisen et al. 1983; Wei and 
Van der Weft 1993). However, due to lack of theory, 
genotypic variances and covariances have not been 
modelled exactly in crossbred populations under domi- 
nance inheritance (VanRaden 1992). 

Alleles that are identical by descent (IBD) cause 
genotypic values between relatives to be correlated 
(Kempthorne 1954). Gillois (1964) and Harris (1964) 
defined 15 "identity modes" concerning the IBD states 
of four alleles in two individuals. Based on these 
identity modes, a set of five genetic parameters and 
its corresponding set of coefficients of identity were 
derived to compute genotypic covariance between 
purebred relatives under dominance inheritance (Gillois 
1964; Harris 1964). Genotypic covariances between 
purebred relatives is a function of these five genetic 
parameters and their corresponding identity coeffi- 
cients. 

Harris (1964) gave recursive formulae to compute the 
identity coefficients. Without computing identity coeffi- 
cients, Smith and M/iki-Tanila (1990) developed a recur- 
sive procedure to compute genotypic covariance direct- 
ly for purebred populations. These papers have been 
discussed and extended by De Boer and Hoeschele 
(1993). 

The objective of this paper is to present theory for 
modelling genotypic means and covariances in a popu- 
lation composed of two pure breeds, A and B, and any 
crosses involving these two breeds. Theory is derived 
under a model with dominance inheritance and multiple 
unlinked loci. 
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Theory 

Consider a genotypic model with n unlinked loci in a random-mating 
two-tJreed population. It is assumed that  the two pure breeds (A and 
B) are in gametic equillibrium. At locus t, let St~ be the random allele 
that individual i inherited from its sire j, and let D*~ be the random 
allele that  i inherited from its dam k. The paternal and maternal  alleles 
of sire j at locus t are SJ and D}; those of dam k are S~ and D~. For  
convenience, consider the F~ as a reference breed group (AB). The 
genotypic value of an individual in any breed group will be modelled 
using effects defined for the F v This model will be used to develop 
theory to compute genotypic means and covariances for a two-breed 
population in the presence of inbreeding. 

Genotypic model 

The genotypic value of individual i, Gi, is modelled as 

n 

Gi = # + Y', (%~ + c%~ + 6s~o~) 
t = l  

= # + ~ Gs~ N (1) 
t - 1  

where: 

/~ = E ( G ~ )  (2)  

is the genotypic mean; 

C~s~ = E(GitS'i) -- # (3) 

is the additive effect of paternal allele S~r 

%~ = E(GIDI) - # (4) 

is the additive effect of maternal  a im Dr and 

6s~o~ = E(G, I S',D'i) - ~s; - a.~ - ~ (5) 

is the dominance effect for genotype S',D' e The expectations in (2) 
through (5) are taken using alMic frequencies in the reference breed 
group. Thus, in the F~, additive and dominance effects will have null 
expectations, and therefore E (Gs~)  = 0. Similarly, the genotypic 

value for another individual i' can be modelled as 

N4: S I -  DI, StieA, DtIeA 

Ns: S I - D I ,  SIEB, DtieB 

where the symbol-= denotes that  alleles are IBD, ~ denotes that 
alleles are not IBD, and e is used to denote the breed of origin of 
alleles (Fig. 1). For  example, N 1 is defined as the mode where alleles S*i 
and Dti are not IBD and are from breed A. 

The expected value of G i from (1) can be written as 

n 

E(G) =/~ + F, E(Gs:D:) 
t = l  

where n r is the event that the identity state and breed origin for the set 
of two alleles (St/and D) belongs to identity mode N .  and p[ is the 
probability of G. The p[s will be referred to as TIMS coefficients. 
Rearranging (7), the genetic mean for individual i can be written as 

5 n 
+ r 

r - - 1  

5 

= Z +  r)p7 
v - 1  

5 

= S (s) 
r - - 1  

where #* = # + # r = E ( G i [ n r )  for r =  1 . . . . .  5 are the location par- 
ameters for the two-breed population. Let A* be a population where 
all individuals are homozygous at each locus with allelic frequencies 
of pure breed A. Similarly, B* is defined to be a homozygous 
population with allelic frequencies of pure breed B. Now, #~ is the 
genetic mean for pure breed A, #* is the genetic mean for the AB breed 
group, #* is the genetic mean for pure breed B, #~ is the genetic mean 
for homozygous breed A*, and p* is the genetic mean for homozygous 
breed B*. Then, the genotypic mean is a linear function of five TIMS 
coefficients and the corresponding location parameters. 

For inbred populations, these TIMS coefficients can be computed 
using a recursive procedure as shown later. For noninbred popula- 
tions, n~, n2, and n 3 are functions of the breed composition of the 
parents as shown below. Note that identity modes N 4 and N5 do not 
occur in noninbred populations. 

G i, = I ~ q- ~, Gs~,D~, 
t = l  

(6) 
Fig. 1 Identity modes N. Identical alleles are connected 

where # and Gs~,D~. are defined as for i. 

Means 

The genotypic value for an individual i in any breed group, G i, can be 
modelled as (1). The alleles Sti and D I at locus t each comes from either 
breed A or B. Further, these alleles may be identical by descent (IBD) 
or not. Specifying the breed origin and identity states for alleles S I and 
Dtl results in a set of five two-breed identity modes for a single 
individual (TIMS): 

S i ~[~ Di, SiEA, Di~A N 1 :  t t t t 

Si ~ Di, SIEA, DieB N2: t t t t 

Si ~ Di, Si~B, Di~A N2: t t t t 

t t t t 
N 3 :  Si ~ Di, SI~B, DIffB 
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Nr 

N1 

N2 

Nz 

N~ 
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N5 
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o o A 
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The probability that alleles St~ and D t, belong to mode N 1 is 

p~ = f s  f~  (9) 

where f s  is the breed A composition for the sire and fAD is the breed A 
composition for the dam. Similarly, the probability that alleles S~ and 
D t, belong to mode N2 is 

p~ = f s  f~  + f s / ~  (10) 

where f~  is the breed B composition for the dam and f s  is the breed B 
composition for the sire. The probability that alleles S~ and D I belong 
to mode N 3 is 

p3 = f s  f~. (1 i) 

Covariances 

The genotypic covariance between individuals i and i' is 

Cov(Gi, Ge) = E(GiGi, ) - E(Gi)E(Ge). 

The first term in (12), from (1) and (6), can be expressed as 

E(GiGi, ) = Os;1) GS{,D~. 
r 

n n 

= #2 + # ~ [E(Gs~N) + E(Gs~.D~.) ] + ~,, E(Gs,D~Gs, D~ ) 
t = l  t = l  

n n 

+ ~ , E  E(Gs~o~Gs::D[;)- 
t = l t ' = l  

t~ t '  

For the second term of (12), 

E(G~)E(G~,)= E # +  Z E # +  Z Gs:j)[, 
t = l  t = l  

= #z + St f [E(Gs:D:) + E(Gs:,N,) ] + f E(Gs;D~)E(Gs[,~{, ) 
t = l  t = l  

+ L L  E(Gs~DgE(Gs~.D~;) �9 (14) 
t = l t ' - i  

t~ t '  

Note that because breeds A and B are assumed to be in gametic 
equilibrium and loci are unlinked, alleles at locus t in a crossbred are 
distributed independently of those alleles at locus t', i.e., 

t t' t t' Pr(S,,S;)=Pr(S,)Pr(Si) (Lo etal. 1993). Thus, E(Gs~Gs~:o~:)= 
E(Gs>~)E(GsI;9~:), and (12), or the difference between (13) and (14), 
becomes 

(12) 

(13) 

n 

Cov(G~, Gr) = ~ E(Gs~NGs~,D;. ) -- L E(Gs~N)E(Gs~,D~.). 
t = l  r = l  

(15) 

At locus t, individuals i and i' each has two alleles, S I and D I, and St,, 
and DI,. Each allele comes from either breed A or B. To compute (15), 
we must know the identity state for each pair of alleles, i.e., whether or 
not the alleles are identical by descent (IBD), and the breed origin for 
each allele. 

It is convenient to start by showing how the first term of (15) is 
computed when all four alleles are from the same population. For this 
situation, Giltois (1964) and Harris (1964) have defined I5 possible 

cases of identity by descent, called "identity modes", between alleles of 
i and i': 

I1: S'i-SI,~DI~D~,,S'i-SI,~DI, 

I2: D'i-- D;,~S'igkS'i,,D'i==-Dti,~SI, 

I3: S;=-DI,{~D;~S;,,S;=-D'i,~S ;, 

14: D' i =- st,, r S I ~ D;,, D; =- S:. ~ D;. 

z,: S~-SI,:D;=-D',, 

16: S t, -= D' e 71 D I -- S;, 

I7: S ;~D;=-S  I,r 

I8: StI==-DI=-Dti,~S I, 

191 S[  ~ St,, ~ D I, ~ D I 

I,o: D',=-SI,==-Dti,~S I 

I,,: S t ,=-P I=-S I,=-D I, 

1,2: SI ~ DI ~ SI,~s Dte, SI @ S~e, Dti ~ D* i, 

;13: SI=-D~:SI,=-DI, 

1,4: SI-DI~SI,~Dti,,S*i=-Dt,~Dtr 

115: SI,==-DI,~StI~DtI, Sti,==-DI,~D' i 

where, for example, 11 is the mode where alleles S~ and Ste are IBD but 
not IBD to D I and , , t D,,, and D~ and D e are not IBD. This set of 15 I 
identity modes is represented graphically in Fig. 2 (Jacquard 1974). 
Gillois (1964) and Harris (1964) used these I identity modes to 
compute the genotypic covariance between relatives in purebred 
populations. 

By ignoring the paternal or material origin of alleles, Harris (1964) 
and Jacquard (1974) grouped the 151 identity modes into a set of nine 
J identity modes (Fig. 3): 

J1:I1,I2, I3,I4 J6:It2 

J2:I5, I6 JT:Ila 

J3:I>I8 J8:I14 

J4:I9, Ilo J9:I15- 

J5:Ill 

Fig. 2 Identity modes I. Identical alleles are connected 
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Fig. 3 Grouped identity modes J. Identical alleles are connected 

At locus t, the first term of (15), E(Gs~D~Gs~.N.), can be written as 

E(Gsr Gs~.v~) 

= E [Gs~ N Gs~,, :, [ (St,, D I, St, ,, D re)e J1 ] Pr [(S',, D',, St,,, Dtr) e J ,  ] +-- .  

+ ~ I-~s~.: G<.~, I(S], Dr,, S'r, DI,)e J9] Pr [(S I, D I, St,,, DI,)eJ9]. 

From Fig. 3, however, it can be seen that 

E(Gs~D ~ Gs~,~{, I(s',, D',, St,,, D I, ~ J3] = E [G~ i~ Gs:,o{, I(S~ , Dr, , St, ,, Dte)e J4] 

and 

g(o,~,,:Gs>:,l(St;, Dr,, St,., Dr, ,)e J8] = E [Gs~ N Gs~.D:.I(Sl, D',, St,,, DI, )~.19]. 

Thus, for the purpose of computing E (Gs~.~ Gs~.D~.), it is not necessary 
to distinguish between J3 and .14, and be{~een J8 and a 9. Therefore, 
the nine J identity modes can be further reduced to seven K identity 
modes (Fig. 4): 

K i : J 1  K3:J3,J4 

K2:J  2 Ka:J5 

Fig. 4 Grouped identity modes K. Identical alleles are connected 
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Now, we can use these seven K modes to define two-breed identity 
modes for a pair of individuals (TIMPs) by specifying the breed origin 
for the alleles in addition to their identity states. 

i Consider K1, which consists of four I identity modes, with two 
alleles IBD and two not IBD. The two IBD alleles are denoted C1> 
and the two not IBD are denoted F1 i and F12. Specifying the breed 
origin for these alleles results in a set of eight L breed-specific identity 
modes for K~: 

LI: ClleA, Fl leA,  F12eA 

L2: Cll~A, FilEA, Fi2eB 

L3: CliEA, FilEB, F12EA 

L4: ClleA,  Fll~B, Fi2eB 

Ls: CiI~B, FliEA, F12EA 

L6: CllEB, FliEA, F12~B 

LT: ClleB, FlleB,  F12eA 

L8: Cll~B, FileB,  F12eB 

which is summarized in Table 1. Note that by specifying the breed 
origin for each allele 

E [Gs~D~ Gs~,D~, [(S I, Dtl, st,,, Dte) e L2] = E [Gs~D~ Gs~,N ' [(St,, D I, Ste, P'r)e L 3 ] 

and 

E [Gsio: Gs~,,~, [(St,, DI, SI,, DI,)e L63 = E [GsfD: Gs~,D~, I(St~, Dr,, St r, Pl,)e LT]. 

To compute E(Gs~,f Gs~,Df,), therefore, it is not necessary to distin- 
guish between L 2 and L> and between L 6 and L 7. Hence, the set of 
eight L breed-specific identity modes, L i to L s, can be reduced to a set 
of six TIMPs for KI: 

Mi:L1 

M2 :La, L3 

M3:L4 

M4:L5 

M5 :L6, L7 

M6:L8 

which is also summarized in Table 1. Similarly, specifying the breed 
origin for alleles IBD and alleles not IBD for K 2 through K 7 results in 
TIMPs M 7 through M3o (Table 2-7). 

Table 1 Identity modes L and M resulting from K 1. The two IBD 
alleles are denoted C 11, and the two not IBD are denoted F 11 and F 12 

M L Cli  F l l  F12 

M i L i A A A 

M 2 L 2 A A B 
M2 L3 A B A 
M 3 L 4 A B B 
M 4 L5 B A A 
M 5 L 6 B A B 
M 5 L 7 B B A 
M 6 L s B B B 



Table 2 Identity modes L and M resulting from K 2. The two pairs of 
IBD alleles are denoted C21 and C22 

M L C21 C22 

M 7 L 9 A A 
M s Llo A B 
M8 L11 B A 
M 9 L12 B B 
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Table 6 Identity modes L and M resulting from K 6. The two pairs of 
IBD alleles are denoted C61 and C62 

M L C61 C62 

M22 L35 A A 
M23 L36 A B 
M23 L3v B A 
M24 L38 B B 

Table 3 Identity modes L and M resulting from K 3. The three IBD 
alleles are denoted C3~, and the one not IBD is denoted F3, 

M L C31 F13 

Mlo L13 A A 
M l l  Lt4 A B 

M12 L15 B A 
M13 L16 B B 

Table 4 Identity modes L and M resulting from K 4. The four IBD 
alleles are denoted C4~ 

M L C41 

MI,, L17 A 
M15 L18 B 

Table 5 Identity modes L and M resulting from K s. In K5, there are 
no alleles IBD. The two alleles from i are denoted F 51 and F 52 and the 
two alleles from i' are denoted F53 and F54. 

M L Fs~ F52 F53 F54 

MI6 L19 A A A A 
M17 L2o A A A B 
M17 L21 A A B A 
MlS L22 A A B B 
MI 7 L23 A B A A 
M19 L24 A B A B 
M19 L2s A B B A 
M2o L26 A B B B 
M17 L27 B A A A 
M19 L28 B A A B 
M19 L29 B A B A 
M2o L30 B A B B 
M18 L31 B B A A 
M20 L32 B B A B 
M2o L33 B B B A 
M21 L34 B B B B 

Now, for locus t, the first expectation term in (15) can be written in 
terms of M identity modes as 

3O 

E(Gs~o~Gs~,D~.)= ~ E(Gs~D~Gs~.D~.lmq)Pr(mq) 
q = l  

30 

Cii, Oq 
q = l  

(16) 

Table 7 Identity modes L and M resulting from K> The two IBD 
alleles are denoted C 71, and the two not IBD are denoted F 71 and F 72 

M L C71 F71 F72 

M2s L39 A A A 
M26 L4o A A B 
M26 L41 A B A 
M27 L42 A B B 
M28 L43 B A A 
M29 L44 B A B 
M29 L4s B B A 
M30 L46 B B B 

where mq is the event that  the breed origin-identity state (BO-IS) for 
the set of four alleles (S'i, DI, SI,,DI) belongs to identity mode Mq, 
St D t ~' ~ t . . .  i' i' a i "  L l i ' )~JVlq ,  cqi ' = Pr(mq), and 

t = E(Gs, wGs~v ~ Ima). Oq - i - i  i, i, 

The cs are called "TIMP coefficients". 
For  n unliked loci, the first term in (15) can be written as 

n n 30 

E(GstD, G ~ ~ = q t 2 Z c.,Oq 
t = l  t - - l q - - 1  

3 0  
q t = ~ cll, Oq 

q = l  t = l  

3O 

= Y~ c7,,0~ 
q - 1  

where 

(17) 

n 
t Oq = ~ Oq. 

t = l  

The 0s are the dispersion parameters for the two-breed population. 
Note that  for M16 through M3o, none of the alleles in i is IBD to 

an allele in i' (Table 5 through 7 and Fig. 4). Thus for q = 16 .. . .  ,30 

~ E (Gs~D~ Gs~,D~.[rnq) = ~ E(Gs~o~lrnq) E(Gs~.D~.lmq). 
t = I  t = l  

Further, recall that  E(Gs~D~ ) = 0 because F 1 was taken as the refer- 

ence breed group. Therefore, from Tables 5 through 7, five 0s are null: 

017 = 019 = 020 = 026 = 029 = 0. (18) 

The first term of(15) can thus be written as a linear combination of 25 
0s. A recursive procedure can be used to compute the T IMP coeffi- 
cients, as shown later. For noninbred populations, dispersion par- 
ameters can be reduced to a set of 12:01 to 09, 016 , 01s , and 021, 
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For  a two-breed popula t ion ,  the expecta t ion term E (Gs[o9 in (15) 
can be wri t ten  in terms of T I M S  as 

5 

E(Gs~I)~) = E E [(Gs~,I) ln~]p~ 
r = l  

5 

= E p~qS'~ (19 )  
r = l  

where t G = g [(Gs>91n,]. 
Fo r  locus t, using (19), the second term of (15) is 

E(G 9E(G ) ' t  ' s >  s~,~, = i ~ ' 
\ r = l  / \ r '= l 

= ~ ~ p;p,~,'4:*',.. (20) 
r = l r ' = l  

Recall t ha t r  Gs~o, was defined for the F 1 breed group,  where the 
�9 . i i . . . .  t 

relatlonsh~p between alleles is given by N2, so tha t  terms revolving ~b 2 
in (20) are n u l l  Thus,  (20) can be wri t ten as 

1 1 t 2 3 1 t t E(Gs~D~)E(s~,o~, ) = P~ P~, (~9~) + (p~p3 + P~ pe)~ ) 1~3 

3 3 t 2 4 4 -  t 2 
+ P~ P~, @3) + P~ P~, (~4) 

4- 5 5 4  t t 5 5 t 2 
+ (Pi Pi' + Pi Pi')~)4~ ) 5 -~ Pi Pi' ( 0 5 )  

4 1 t t 3 4  4 3  t t 
+ (pr + P~ pe)~b~b 4 + (p~ Pe + P~ P~,) q~3q~4 

1 5 5 1 t t 3 5 5 3 t t 

§  q- PiPi ' )~) l~)5 q - (P iP i '  q- PiPi')~)3~)5" 

For  n unl inked loci, the second term of (15) f rom (21) is 

E(Gs~N)E(G<,N) = p~p~, ~, (0tl)2 + (p~p3 + p~p~,) ~ ) ;  
t - 1  t = l  t = l  

3 3  t 2 d- d- + p, p,, Z (G) 2 (~3) + p~ pi, 
t--1 t = l  

n n 
4 5 5 4 t t 5 5 

+ (p, p,, + p, p~,) E E (G7  
t = l  t = l  

n 
+ (pr + p4p~,) E q~l( t 

t = l  

n 
3 4 4 3 t t 

~- (Pl Pi' ~- Pi Pi') E ( ] ) 3 4 4  
t = l  

(21) 

n 

+ (p~p5 + pSip~) E (~162 
t = l  

n 
3 5 5 3 t t 

q- (Pi Pi' -1- Pi Pi') E (22) 
t = l  

Recall tha t  M16 is the mode  where each allele in individuals  i 
and  i' is independen t  and  the  alleles are f rom breed A (Table 5), and  
tha t  N 1 is the mode  where the two alleles in an  individual  are 

t t t t m not  IBD  and  bo th  are f rom A. Thus  E[(Gs,o~Gs~.D~,)] 16~ = 
so tha t  ~ t =  1(~bl) can be wri t ten as E[(Gs~D,)]nl]E[(Gs~DOtnl ] ,, ' 2 

(~b',) 2 = ~ E [(Gs~N) ln 1 ] E [(Gsf,Df,lln 1] 
t = l  t = l  

n 

= ~ EE(Gs~o~GGN,)Im16] 
t - 1  

which was defined before. Similarly, 

~ t l ~ t  3 = 0 1 8  ( 2 4 )  

t = l  

( ( ~ 3 )  2 = 0 2 1  ( 2 5 )  

l = l  

( 4 4 )  2 = 0 2 2  ( 2 6 )  

t = l  

n 

~b4~b 5 = 023 (27) 
t = l  

( l~t5)  2 = 0 2 4  ( 2 8 )  

t - 1  

n 

~bl~b 4 = 02s (29) 
t = l  

G G  = 027 (30) 
t = l  

GG = 028 (31~ 
t = l  

n 

4345 = Go (32) 
t = l  

where 0qs were defined previously. Now, the second term of (15) can 
be expressed using the 0qs as 

3O 

E(Gs~N)E(Gs~N,)= ~ dq~eOq (33) 
t = l  q - 1 6  

where from (22), dqi, s are produc ts  of T I M S  coefficients: 

d~f6 =p~p~ 2 4  5 5 
dii, = Pi Pi' 

= Pi Pi' -]- Pi Pi' d~i '5 1 4 ,* 1 = Pi Pi' + Pi Pi' 

4 l = d d  27 ~ ,  du, = Pi Pi, -]- P4iP~ 
4~ = p~p~ 28 1 ,  d,, = Pi Pi' + P~P~ 
d 2 , 3  4- 5 5 4- 3 0  3 5 

= Pi Pi' + Pi Pi' die = Pl Pe + P~P~ 

and where d~7 = d~i 9 = d 2~ = d 26 = d~ y = 0. 
Subtrac t ing (33) f rom (17) yields the covar iance  between individ- 

uals i and  i': 

n n 

Cov(G i, G,,)= Y, E(Os~o:Gs~,N)- E E(Gsf~)gE(Gs:,G) 
t = l  t = l  

3 0  3 0  

= E 4 , o ~ -  E 4,o~ 
q = l  q = 1 6  

15 3 0  

= Z cq~'Oq + Z (c~,,- dqi,)Oq. (34) 
q = l  q=16 

Thus, covar iance  between relatives in a two-breed popula t ion  is a 
funct ion of T I M P  coefficients, T I M S  coefficients, and  30 dispersion 
parameters ,  five of which are null. 

Var iance 

The  variance, a special case of covariance,  can be computed  as 

= 016 (23) Var(Gi) = Cov(Gi, Ge) 
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n n 

SiD i Sin 1) E EE(GsTo~)] ~ 
t = l  t = l  

1 5  

= __ ~ CqiO q __ i 6  2 1  2 2  24- 
(dii, 0 1 6  n -  dii, 0 2 1  -~- dii, 0 2 2  - ~  dii, 0 2 4 . )  (35) 

q = l  

because c~i = 0 for q = 16 . . . . .  30 (Tables 5 through 7, Fig. 4) and 
q _ _  dii, - 0 for q r 16,21,22,or 24 (equation 18 and Fig. 1). 

Recursive procedures 

For purebred populations, identity coefficients between relatives 
have been computed using recursive formulae (Harris 1964). Also, 
covariance between relatives have been computed directly, without 
computing identity coefficients, using a recursive procedure (Smith 
and Miiki-Tanila 1990)�9 

For crossbred populations, it is shown below how to obtain 
identity coefficients (cq~,), coefficients of breed origin (p[), and 
covariance between relatives using recursive procedures. It is as- 
sumed that individuals in the base populations are unrelated, nonin- 
bred, and of known pure breed. 

TIMP coefficients 

Consider TIMP coefficient q for two individuals i and i', d. This is the 
t t ~t" 

probability that alleles Si, Di, SI, , and Dti , belong to identity mode Mq. 
Note that for individual i, allele S I is either allele Stj or D; 3 of sire j, with 
equal probability. Thus c~. can be expressed reeursively as 

c~i, = Pr [ ( Sti, DI, SI,, DI,)e M q] 

= �89 Pr [(S'j, DI, SI,, Dt~,)eMq] 

1 t t t t + 7Pr [(Dj, D~, S~,, D~,)~Mq]. (36) 

This process will be referred to as "recursion of allele SI". Similarly, 
allele D I is either allele Stk or D~k of i's dam k, with equal probability. By 
recursion on allele DI, each of the two probabilities in (36) becomes 

t t t t pr[(Sj, Di, Si,,Dr)EMq ] I . . . .  = 7 Pr [($2, Sk, S~,, Dr) ~ Mq] 

1 t t t t + 2Pr [(S2, D~, S~,, Di,)~Mq] (37) 

and 

t t t t 1 t t t t Pr [(Dj, Di, Si, , Di.)~Mq] = 7Pr [(Dj, Sk, Sr, Di,)~Mq] 

1 t t t t + 7 Pr [(Dj, D~, Si,, Di,)e M J  (38) 

Suppose now that j' is the sire of i', with paternal and maternal 
alleles St;, and Dt~,, and that k' is the dam of i', with paternal and 
maternal alleles S~, and D~,. With equal probability, allele S t, is either 

t t �9 -t t . - t t t S), or D j, of s~re j and allele D~, as exther S k, or D k, of dam k. The 
probabilities in (37) and (38), therefore, can be processed further by 
recursion on alleles S I, and DI,. This recursive process is continued 
until each of the four alleles is from a base population. 

Recall that TIMPs specify the identity state and breed origin for 
alleles, and that each individual in the base population is assumed to 
be unrelated, noninbred, and of known pure breed; thus alleles of base 
individuals are not IBD. Therefore, the probability that alleles from 
base individuals belong to identity mode Mq is either unity or null, as 
can be seen from the following hypothetical example involving two 
individuals. 

Let 1 and 2 be base individuals from breed A. Consider comput- 
�9 t t t t 
xng, say, Pr [-(S~, D~, S~, Sz)eM~]. Note that one of the first two alleles 
is IBD to one of the second two alleles and that other alleles are not 
IBD. This BO-IS belongs to M~ (Table 1 and F ,  4), so that 

. . . .  {~ for q = l  
Pr[(S~'D~'S~'S2)~Mq] = for q r 1. 

Under Mendelian inheritance, alleles that an individual has in 
common with any ancestor must also be present in at least one of its 
parents. Following the rules given below ensures that the recursive 
process is consistent with Mendelian inheritance: 

(1) Number individuals in ascending order from oldest to youngest. 
(2) Always recurse on an allele of the youngest individual. 
(3) Recurse on identical alleles simultaneously. 

For example, consider the recursive process for 
Pr [(Sty, D ~ S t D t �9 t s, s, s)eMq]. By Rule2, recurslon must be on allele Ds, 
and by Rule 3, recursion on identical alleles Dr8 must be done 
simulataneously. Suppose the dam of individual 8 is 3, with alleles Sr 
and D~. Then 

t t ~ t 1 t t I t 
Pr [($7, Ds, $5, Ds)eMq] = 2Pr [($7, $ 3 ,  S s ,  S3)ffMq] 

i t t t t + ~Pr [(S 7, Ds, S5, Ss)eMq]. 

Now, to illustrate the recursive computation of TIMP coefficient, 
q consider a pedigree of five individuals (Fig. 5) fi-om a two-breed (A Cii,, 

and B) population. Assume individuals 1 and 2 are base individuals 
from breed A and 4 is a base individual from breed B; thus they are 
unrelated and noninbred. Consider, for example, computation of e~ 5. 
With equal probability, allele S~ of individual 5 is either S~ or D~ of 
sire 3, and allele D~ is either S~ or D~ of dam 4. Thus, c~5 can be 
expressed recursively as 

2 t t t t 
Css = Pr [($3, D3, $5, D5)eM2] 

1 t t t t t t t t 
= ~ {Pr [(SB, D3, S s, Ds)@M2] + Pr [(Ss, D3, Ds, Ds)~M2] } 

1 t t t t =~{pr[(Ss ,  Ds, Ss, S4)EM2 ] t t t t + Pr [($3, D3, $3, D4)EM2] 

t t t t t t t t 
+ Pr [($3, Ds0 $3, $4)~M2] + Pr [(Sa, D3, Ds, D4)GMz]. (39) 

Note that alleles S] and D~ are from base individual 4; thus recursion 
on these two alleles is not continued. Alleles S~ and D~, however, are 
from non-base individual 3; thus recursion on these two alMes is 
continued. Finally, C~s can be expressed as 

2 1 t t t t %5 ~{Pr[(S1,S2,S1,  S4.)~M2] t t t = + Pr [($1, D2, $1, S4)ffM2] 
t t t t t t + pr[(D~,S2,D~,S4)~M2] + Pr[(D1,D2, t t D 1 ,  S 4 ) E M 2 ]  

+Pr[(St~,S~,S],D])eM2] t t t t + Pr [(S1,DE, $I, D4.)~M2] 

t t t t + pr [(D1 ' $2 ' D1 ' D4.)eM2] + t t t t Pr [(D1, D2, D1, D4.)~M2] 

t t t t t t t t + Pr [($1, $2, $2, S4)~Mz] + Pr ]-($1, D2, Dz, S4)EM2] 

Fig. 5 Pedigree of five individuals used in illustration of recursive 
procedures. Circles represent females, squares represent males. The 
breed of a founder is given by the letter within the square or circle 

$4 Dr 

t t Ss D5 
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t t t t t t t t 
+ Pr [-(D ~, $2, $2, S,)~M2] + Pr [(D~, 02, D2, S4)eM2] 

t t t t t t t 
+ Pr [(S,, $2, $2, D~)~M23 + Pr [(S~, D2, D2, D~)6M2] 

t t t t t t t t + Pr[(D~,S2, S2,Dr + Pr[(D,,D2,Dz, D4)eM2~}. (40) 

Recall that identity mode M2 has one of the first two alleles IBD to 
one of the second two alleles and that the other two alleles are not 
IBD, with the two IBD coming from breed A and the two not IBD 
from breeds A and B (Table 1). Each of the 16 BO-IS combinations in 
(40) belongs to M2. Thus, each probability in (40) is unity, and c~ s = 1. 

Now for another example, consider computation of TIMP coeffi- 
cient c~s. Note that alleles S~ and D~ are from base individual 1; thus 
recursion is not performed on these two alleles. Alleles St and O'5, 
however, are from non-base individual 5; thus recursion is performed 

�9 - - t - . t t on these two alleles. With equal probaNhty, allele S s is e~ther S 3 o r  D 3 
�9 - t . , t t �9 1 of its s~re 3, and allele D 5 is either $4 or D 4 of its dam 4. Thus, c~s can 

be processed reeursively until all alleles are from base individuals: 

1 t t t t 
cl 5 = Pr[(S~, D1, Ss, Dh)eM~? 

i t t t t t t t = 7 {Pr [(S~, D~, $3, Ds)e M~] + Pr[(S 1, Dp D3, Dts)eM~} 

1 t t t t t t t t = ~ {Pr [(S~, D~, S~, S4)eM~] + Pr [(S~, D~, $3, D4)~M~] 

+ Pr [(S',, D'~, D~, S~4)eM,] t t , t + Pr [(S D D l, D3, Dr } 

1 t ~ t t t t t t = g {Pr [(S~, D~, Sp S4)eM~] + Pr [(Sp D ~, D ~, S,,)em~] 

t t t t t t + Pr [(S], D~, S~, D4)sM~] + Pr[(S D D~,D~, Dr 

+ Pr [(St~, D'~, S~, St4)eM~] + Pr [(S'~, Dr1, Dr2, St4.)GMI? 

+Pr~(St~, t t t ~ ~ t ~ . D~,S2,D4.)eM~] + Pr[(S~,D~,Dz, D4)eM~] } (41) 

None of the eight BO-IS combinations in (41) belongs to Mp  Thus, 
each probability in (41) is null, and cls = 0. 

To compute c~s, note that each of the first four combinations in 
(41) belongs to M2 and each of the last four combinations does not. 
Thus, each of the first four probabilities in (41) is unity, each of the last 

2 1 four probabilities is null, and c~5 = 7. 

TIMS coefficients 

Recall that TIMS coefficients for individual i, p~, is the probability 
that alleles S~ and D~ belong to identity mode Nr. With equal 

t t t t probability, allele S~ is either Sj or D3 of its sire j, and allele D~ is either 
S~ or D~ of its dam k. Thus, p~ can be expressed reeursively as 

p', = Pr [(S'~, D'~)r 

= �89 { [Pr(St~, D~)eN~] + [FifO}, D~)eN~]} 

= �88 {[Pr@, S~)eNJ + [Pr@, P;)eN~] 

+ [Pr(D~, S~)eNr] + [Pr(Dtj, Dtk)eN~]}. (42) 

This recursive process is continued until each allele is from a base 
population. Rules 1 through 3 for computing the TIMP coefficients 
must also be followed here�9 

To illustrate, consider the same pedigree that was used to compute 
TIMP coefficients (Fig. 5), with the same information and assump- 
tions. Consider a coefficient of breed origin for individual 3, p~. With 

�9 - t �9 �9 t t - �9 t equal probabd~ty, allele $3 ~s eKher S~ or D, ohts  s~re 1, and allele D3 
�9 . t t ' 1 �9 ~s either S 2 or D2 of its dam 2. Thus P3 can be processed recurs~vely 
until each allele is from a base population: 

1 t t 

P3 = Pr [($3, Da)eN,]  

1 t t t t = ~{Pr [(S~, D~)eN~] + Pr [(D~, D3)e~ ~} 

= �88 [(S'l, S2)eN~] + Pr [(S;, D~)eN1] 

+ Pr [(D~, S~)eN~] + Pr~(Dt~,Dt2)eNa]}. (43) 

Each of the four BO-IS combinations in (43) belongs to identity mode 
N~, where two alleles are not IBD and come from breed A (Fig. 1). 
Thus each probability in (43) is unity, and p3 = 1. 

Covariance between relatives 

Covariance between relatives can be computed as in (34) using TIMP 
coefficients (c~i,) and products of coefficients of breed origin (d,j 
obtained by recursion. We now compute the covariance between 
relatives directly following a recursive procedure (Smith and M~iki- 
Tanila, 1990). 

Consider the first expectation term of (15), E(Gs~o:Gs~oO. With 
equal probability, allele S~ is e~ther Sj or Dj of its sare j. Thus, 
E (Gs~o~ Gs~.o~,) can be expressed recursively as 

E(Gz,w Gz~n0 = 7[E( Gs}D~Gs~ DO + E( G1)}D~Gs~,D~ ) ]. (44) 

Similarly, with equal probability, allele D~ is either S~ or Dtk of its dam 
k. Thus, by recursion on allele Dt~, the two expectation terms in (44) 
can be expressed as 

1 E(Gx:wG~,,Q = % [E(G .... G . . . .  ) + E(G .. . .  G~w)] 

and 

(45) 

1 E(G ~ ~G~ ,) = - [ E ( G  , ~G~ ,)+E(GD~D~G, ,)] DjD i Si,D i, 2 DjSg Si,D i, j ~ SI,D i, " (46) 

Each expectation term in (45) and (46) can be processed recursively as 
before until each allele is from a base population�9 Then, the BO-IS 
combination for the four alleles with belong to one of 30 TIMPs. tf the 
BO-IS belongs to, say, Mq, then the expectation term, summed over n 
loci, can be replaced by Oq. 

Similarly expectation terms E(Gs~OE(Gs~oO in (15) can also be 
�9 t ' t " r t t 

processed by recursmn on alleles Si and[ D~, and S i, and D~,: 

E(Gs~N) E(GG) = ~ [E (Gs~s:) + E (Gs~G) 

+ E(GD~s~) + E(GD~D~,)] 

x [E(Gs}s + E(Gs}.D~,) 

+ E(G@s#) + E(G@G)]. (47) 

The expectation terms in (47) can be processed recursively until 
each allele is from a base population. Then the BO-IS combination 
for the pair of alleles at a locus will belong to one of five N modes 
(Fig. 1), and the product of expectations summed over n loci can be 
replaced by 0_ as explained below�9 

Suppose, ~or example, the pair of alleles Stj and Stk are from base 
populations and belong to mode N ,  and the pair of alleles Stj, and stk. 
are also from base populations and belong to N,,. Then for r = r' = 1, 
the product of E [(Gs~D~[n,. ] and E [(Gs~.s#)ln,.,] summed over n loci 
can be written as 

E[(as~sOl,~]E[(ashs~,)ln,,] = ~ EE(ashs~Gs~,sx)lmq] = 0q (48) 
t=l t=l 

with q = 16, because in M16 the four alleles are independent and are 
from breed A, and in N1 the two alleles are not IBD and are from 
breed A. The relationship between all pairs of N modes and M modes 
is in Table 8. Thus, for example, if r = 1 and r' = 3, from Table 8, 
q = 18, and (48) in 01s. 

To illustrate, consider the same pedigree that was used to compute 
TIMP coefficients and TIMS coefficients (Fig. 5), with the same 
information and assumptions�9 For example, covariance between 
individuals 1 and 5 is 

Cov(Gs]Di GGG ) = E( G siD] GGD~) -- E( Gs]~] ) E( GGD~). (49) 

Alleles st1 and Dr1 are from a base individual; thus recursion is not 
performed on these two alleles. With equal probability, allele St5 is 
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Table 8 The relationship between pairs of N modes and M modes 

N~ Nz N 3 N4 N~ 

N1 M16 M17 M18 M25 M28 
N2 M17 M19 M20 M26 M29 
N3 M~s M20 M21 M27 M30 
N4 M25 M26 M27 M22 M23 
N5 M28 M29 M30 M23 M24 

�9 t t �9 �9 t . �9 t t - either S 3 or D 3 of its sire 3, and allele D~ is either & or D 4 of its dam 4. 
Thus, the first expectation of (49) can be expressed rccursivcly as 

1 
E(GsIDi GGD ~) = ~ [E(GsIDi Gs~si) + E( GsiD~ GsiDO 

+ E(Gs~ G GD~s~) + E(GsID~ GD~D~)]. (50) 
t t . . . . . .  Alleles S 4 and D 4 are from base mdwMual 4. With equal probablhty, 

t . . t ~ �9 ' t - - t allele S 31s e~ther $1 or D 1 of its sire 1, and allele D 3 lS e~ther allele S 2 or 
D 2 of its dam 2. 
Thus expectations in (50) can be processed recursively on alleles S~3 
and D 3 as 

1 E(Gs~D~ Gst D~) = ~ [_E(Gs~DI Gsis~) + E( Gs~D~ GD~S[) 

+ E(Gs~G GS*~D~) + E(GsID i GD~DI) 

+ E(Gs:G Gsxsi) + E(Gs~Di GD~S t) 

( . . . . . . . .  ) . . . . . . . . .  )]. 

Each of the first four BO-IS combinations belongs to M~, where one 
of the first two alleles is IBD to one of the second two alleles and the 
other two alleles are not IBD, with the two IBD coming from breed A 
and the two not IBD from breeds A and B (Table 1). Thus each of the 
first four expectations in (51), summed over n loci, is replaced by 02. 
Also, each of the last four BO-IS combinations belongs to M iv, where 
four alleles are not IBD, with one allele from breed B and the others 
from breed A. Thus each of the last four expectations, summed over 
the n loci, is replaced by 0~7. Hence 

n ' 

I E(Gs~oi GGG) = ~(0~ + 0~7 ) 
t = l  

1 
=~02 

because 017 = 0 by (18). 
Similarly, for the second term, E(GsiG) in (49), alleles S~1 and D~ 

are already from a base population, so there is no need to reeurse on 
these alleles. For E(Gs, n~), however, recursion on alleles of individuals 
5 and 3 gives 

1 
E(GG~) = ~[E(Gs~D~ ) + E ( G . ~ ) ]  

= �88 + E(GGD :) + E(GD~si) + E(GD~D:)] 

= s~ [E(G~:) + E(OD:s:) + E(Gs~:) + E(G:o:) 

+ E(Gsls :) + E(Go~s:) + E(GsID~ .) + E(GGD~)]. (52) 

Thus, the product of E(Gsi~i) and E(Gs;~) gives 

E(Gs]~I)E(Gs~G) = I[E(GsiDi)E(GGsi) + E(Gs~G)E(GD~s ~) 

+ E(Gs~o~)E(Gs~oi) + E(Gs]D~)E(GG~ ~) 

+ E(Gs, D])E(GGs ~) + E(Gsioi)E(GGs ~) 

4- E(GsiG)E(GGDi) 4- E(GsiD,)E(Gv~o~) ]. 
(53) 

For  each product of expectations in (53) note that, because one of the 
pairs of alleles belongs to N2, each expectation summed over n loci 
will be null. Finally, covariance between individuals 1 and 5 is 

Cov(G D Gs) = �89 (54) 

Genetic dispersion parameters 

The dispersion parameters defined previously correspond directly to 
the identity modes. Therefore, this led to a recursive method to 
compute variances and covariances directly without computing 
identity coefficients. These parameters will be referred to as the 
"direct" dispersion parameters for a two-breed population. To give 
genetic meaning to the variances and covariances in a two-breed 
population, we show how to compute these using alternative par- 
ameters that have a more direct genetic interpretation. These alterna- 
tive parameters will be referred to as the "genetic" dispersion par- 
ameters for a two-breed population. 

Variance 

Because loci are assumed to be unlinked and the pure breeds to be in 
gametic equilibrium, the variance of any individual i in the two-breed 
population can be written as 

Var(Gi) = ~ Var(Gs~D~ ). (55) 
t = l  

The above equation can be written as 

n 

Var(G 3 = ~ [EVar(Gs~Dd G) + VarE(Gs~D~ln~)] 
t = 1 nr ~ t nr i t 

(56) 

(Kempthorne and Folks 1971). The first term of (56) can be expressed 
a s  

g ~=Var(Gs~D~ln~)= p~ Var(Gs~DdnD,, 
t t = l  

n 

4- p~ ~, Var(Gs~dn2) 
i i 

t = l  

+ p~ ~ Var(Gs~D~lns) (57) 
t = l  

where, for example, ~ =  1Var(Gs~D~[nl) = (V~ + V A) is the genotypic 
variance in breed A, Vs is the additive variance in breed A, and V~ is 
the dominance variance in breed A. Similarly, the remaining vari- 
ances in (57), summed over n loci, are genotypic variances for breed 
groups, AB, B, A*, and B*. Therefore, (57) is 

n 

E ~=lVar(Gs~D~[nr) = (g~. + l/~)p~ + (VA AB + vAB)p~ 

~ _ ( V B A _ ~ _  ~ 3 A A *  ,A* 4 G)p, +(2v3 +4CAD + v; )pi 

+ ( 2 V ] + 4 C ~ +  ,* s v; )pl (58) 
A B  A B  . . . . .  

where VAA + V~B lS the addmve variance m the AB breed group, V2ff 
is the additive variance of breed A alleles in the AB breed group, 
g A B  . . . .  . 

~ is the addmve variance of breed B alleles also m the AB breed 
r A B  . . . .  B .  goup ,  V~ is the dominance varmnce in the AB breed group. V~ as the 

v B  . . . .  additive variance in breed B, D as the dominance variance an breed B, 
A *  

CAD is the covariance between additive and dominance effects in 
breed A*, VD A* is the dominance variance in breed A*, C ~  is the 
covariance between additive and dominance effects in breed B*, V~* is 
the dominance variance in breed B*. These genetic dispersion par- 
ameters can be written in terms of direct dispersion parameters (0s) 
defined in the previous section�9 For example, consider the eovariance 
between individuals i and i' given TIMP M1. Recall that M~ is the 
mode where only one allele in i is IBD to an allele in i' and all alleles 
are from breed A (Table 1). Thus, the covariance between i and i' is 
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half the additive variance in breed A. Also, from the definition of 
covariance, this can be written as 

i C~ = i E(Gs~o~Gs~,~I, lml) 
t = l  t = l  

- i E(Gs~D~Iml)E(Gs~,D~,Irnl) 
t = l  

= 0 1 - 0 1 6 .  

Thus VA ~ = 2 (01 -- 016). For another example, consider the covariance 
between i and i' given TIMP My. Recall that M 7 is the mode where 
both alleles in i are IBD to the alleles in i' and all alleles are from breed 
A (Table 2). Thus, this covariance is the sum of the additive and 
dominance variances in breed A. This can also be written as 

L C~ my)= i E(Gs~o~Gs~,D~,lmT) 
t = l  t = l  

- L E(Gs~o~[mv)E(Gs~,D~,lmT) 
t = l  

= 0 7 - -  016 .  

Thus Vg = 07 + 0 1 6 -  201. The relationship between these genetic 
dispersion parameters and the direct dispersion parameters is given in 
Table 9. 

Now, the second term of (56) can be written as 

L VarE(Gs~D:[nr)= L Var(0:) 
nr i i v 

t = l  t = l  

n 

= Z { E l ( 4 ; )  2] - [E(~>; ) ]= }  �9 (59) 
t = l  

Recall that q~t = E(Gs:D~IG)" Following Lo et al. (1993), (59) can be 
rearranged as 

" i 2 V arE(Gs:~ln~) = p~p~ (0t~ - -  q~2) 2 
t=  1 r t=  1 

+ p~p3 L (4tl - q~3) 2 
t = l  

+ p4p~ L (()~ - ~b;) 2" (60) 
t = l  

The first sum in (60) is the contribution to the variance due to 
differences in genotypic frequencies between breed groups A and AB. 
This will be denoted Vs A'AB, and can be written in terms of the direct 
dispersion parameters as 

n 

V 2  'AB = 2 ( ( ~ ' i  - -  ~ 2 )  2 

t = l  

n 

= ~ (q~tl)2 = 016 .  (61)  

t = l  

Similarly, the second sum in (60) is the contribution to the 
variance due to differences in genotypic frequencies between breed 
groups A and B, and can be written as 

t = 1  

L t 2 t t ~ 2 
= [(r -2q~i4~+(q~)  ] 

t = l  

= 016 - 2018 + 021. (62) 

The remaining sums in (60) are contributions to the variance due 
to differences in genotypic frequencies between breed groups A* and 
A (vA*'A), B* and A(Vff*'A), B and AB(Vff'a"), A* and AB (vA*'A"), 
B* and AB (Vff*'AB), A* and B (vA*'B), B* and e (Vff*'~), and A* and B* 
(vA*'B*). Now, (60) can be written as 

n 

Vs  Pl Pl + V S Pi Pl 
= 1 , 

t = l  

+ vf' dp  + vf' dp? 

+ v . "dd + vf'% p 4 

+ + 

B*,B 3 5 A*,B* 4 5 
+ Vs P~ P~ + Vs Pi P,. (63) 

The relationship between the genetic dispersion parameters in (63) 
and the direct dispersion parameters is given in Table 10. 

Note that, in some special cases (e.g., two-breed terminal cross- 
breeding system), differences in genotypic frequencies between breed 
groups will not contribute to the genetic variance. For example, the 
coefficient p~p~ for Vs A'A" is null in A because p~ is null for individuals 
from the A breed group. 

These genetic dispersion parameters that contribute to the second 
term of (56) result from differences in genotypic frequencies between 
breeds. Note that, under additive inheritance, there is an analogous 
contribution to the genetic variance due to differences in allelic 
frequencies between breeds (Lo et al. 1993). 

Table 9 Genetic dispersion 
parameters (~q) that contribute 
to the first term of (56), and their 
linear relationship to direct 
dispersion parameters (Oq). The 
genetic identity coefficients (r~i,) 
are also linearly related to c~, as 
shown here 

q Relationship q rii, tlq 

1 1 7 lO + 2c~i4 VA a 1 ~ci~' + Cn, + CU, 

2 c; 
3 8 3 c., + c., V ~  

4 4 + yr .  
8 5 c., l/~ ~ 

1 6 9 13 15 6 ~c. ,  -~ cii, ~- cii, ~- cii, VBA 

7 4 
8 ct, ~ + 4ct, # cA; 

14 9 cii, V~* 
10 + 4 c y  G ;  

11 vg* 

2(01 - 016) 
07-201  + 016 

03 
04 
08 - 0 3  - 04 
2 ( 0 6 - - 0 2 1 )  

09  - -  206  + 021 

(010 - -  025 ) - -  2(01 - 016 ) 

(014 -- 022) + 4(0, -- 016) -- 4(01o -- 025) 
(013 - -  030 ) -  2(06 - -  021 ) 
(015 - -  024-) -~ 4 ( 0 6  - -  021)  - -  4 ( 0 1 3  - -  030)  



Table 10 Genetic dispersion 
parameters (t/s) that contribute 
to the second term of (56), and 
their linear relationship to direct 
dispersion parameters (Oq). The 
genetic identity coefficients (r~e) 
are also linearly related to cqe and 
dqi, as shown here 

q ri], t/q Relationship 

1 7 16 16 13 
1 2  cii, + cii, + cii, - dii, - rii, - r 1,4 - r]i ,5 V ;  'AB 0 1 6  

1 18 016 + 021 _2018 13 - ~(clv - d~r s) V a'" 
1 25 25 

1 4  ~(d,, - -  Cii, - -  cli  O) v A ' A *  0 2 2  "+" 0 1 6  - -  2 0 2 5  

1 28 0 2 4 . + 0 1 6 _ _ 2 0 2 8  1 5  - -  ~ ( C i i ,  - -  d 28) Y B*'A 

1 6  c 6,_~ 9 21 20  v B , A B  ci,, + c,,, - a~,; - r~.., ~ - / ?  - r . ,  ~ 02 .  
1 7  c[,,~ _]_ C22 .q_ d2,2 --ri l l  ~ 19 21 - -  ri i, - -  rii, V A*,AB 0 2 2  

1 8  C]r 5 _}_ C2~ 24- 15 20  21 vB* ,AB -- dir - rii, 024 ii' - -  rii' - -  rii, s 
19 1 27 27 vA*,~ 

- -  2(Cii' - -  dii' ) s 0 2 2  @ 0 2 1  - -  2 0 2 7  
1 30 30 2o ~(d., 4?) v~'"* - -  Cii' - -  0 2 4  + 021 - 2030 

1 23 0 2 2  .+_ 0 2 4  __ 2 0 2 3  21 - ~(c,, - d~, a) V~s *m* 
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Covariance 

The covariance between individuals i and i' in a two-breed population 
can be written as 

Cov(G. G~,) = L Cov(Gs>? Gs>9 
t - -1  

n 

= ~ ECoV(Gs~Dt, Gs~Dtl m-) 
t - 1  mq 

+ L C~ mq),E(GsSD~" mq)]. 
,= 1 mq 

The first sum of (64) can be written as 

n n 

2 E C o v ( G s ~ D ~  , as~,D~,lmq) = Pr(m~) ~ Cov(as~D? Gs~,N ,Ira1) 
t--1 mq ' = 1  

+ Pr(m2) L C~ Gs~,N, lm2) 
, = 1  

(64) 

n 

+ Pr(m3o ) ~, Cov(Gs~D? Gs~,o~,lm3o) �9 
t = l  

(65) 
Recall that for M16 through M 3 o no allele in i is IBD to an allele in 

i'. Thus, the last 15 sums in (65) are null. Each of the remaining sums in 
(65) is a linear function of genetic dispersion parameters. Some of 
these parameters also contribute to the variance in equation (58) and 
are given in Table 11. For example, the first sum in (65) is half the 
additive variance in breed A (VA A) as seen earlier. 

The additional parameters that contribute only to the genotypic 
covariance are additive covariance between a breed A parent and a 
breed AB offspring (cA'AB), additive covariance between a breed B 
parent and a breed A B  offspring (c~'AB), covariance between the 
dominance effect of a breed A* parent and the additive effect of an AB 
offspring (cA~'A*), and covariance between the dominance effect of a 
breed B* parent and the additive effect of an AB offspring (CAnA~'W). 
For example, recall that M 2 is the mode where only one allele in i is 
IBD to an allele in i'. Also, for M 2 the IBD alleles and one that is not 
IBD are from breed A, and the remaining allele is from breed B. Thus, 
the second sum in (65) is the additive covariance between a breed A 
parent and a breed A B  offspring A.AB (C A ). Also, from the definition of 
covariance, this can be written as 

n 

CoV(Gs~D~Gs~D~ Ira2) = ~ E(Gs~o~G~*D~ Ira2) 
t = l  t = l  

-- L E(G<o~Im2)E(Gs~,DsIm2) 
t = l  

=02 

because, ~t= 1E(Gs~D~trn2)E(GsI,,~,Im2) = 0. Thus cA 'AB = 02. The 
relationship between these genetic dispersion parameters that con- 
tribute only to the genotypic covariance and the direct dispersion 
parameters is given in Table 11. 

The second term in (64) can be written as 

L Coy [E (Gs~D~ I mq), E (as~,D~,] mq)] 
t-- 1 mq 

n 

= Z [Cov(E(Gs>~lnq), E(G<,D~,Bn,) ] 
t = l  mq 

n 
t t = Y~ Cov(4,q,, qSq=) (66) 

t =  1 mq 

where ql is the N mode that the set of alleles SI and DI belongs to and 
q2 is the N mode that the set of alieles SI, and D'r belongs to when the 
set of the four alleles belongs to M mode Mq. For example, ql = 1 and 
q2 = 1 when mq = 1. From the definition of covariance, (66) can be 
written as 

n n 

E Cov(~b'q~, ~btq=) = [Pr(n~, n 0 - Pr(n 0 Pr(nl) ] 2 {l~lI(~rl} 
, = 1 nq ii' i i' , = 1 

n 

+ Pr(ns, n5 ) _ Pr(n5)pr(.5)] t__~l , t u, = { q S s q 5 5 }  (67) 

where, for example, Pr..(nl, nl) is the joint probability that the set of 
t t t t alleles S~ and D~ belongs to N~ and that the set S~ and De, belongs to 

. . . .  t t N 1, and Pri(nl) is the marginal probability that the set S i and D i 
belongs to Np Each of the sums in (67) can be written in terms of the 
genetic dispersion parameters which are given in Table 10. For 
example, from (61), the first sum in (67) is equal to V2 'AB = 016. Thus, 
no additional parameters are required for the second term of (64). 

Now, the genotypic covariance between i and i' can be written in 
terms of genetic dispersion parameters as 

25 

Cov(Gi, Gv) = Z rqi'tlq (68) 
q = l  

Table 11 Genetic dispersion parameters (t/q) that contribute only to 
the genotypic covariances, and their linear relationship to direct 
dispersion parameters (Oq). The genetic identity coefficients (rqi,) are 
also linearly related to c~i, as shown here 

q rl], t/q Relationship 

22 2 11 A,AB 
Cii, + 2Cil, C A 02 

23 5 12 B.AB 
Cli, -}- 2Cil, C A 05 

24 ci~) cA~ 'A* 011 -- 202 
25 c,~ ? cA B'B* 012 -- 20s 
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where 11qS are the genetic dispersion parameters given in Tables 9-11, 
and r~,s are the genetic identity coefficients for a two-breed popula- 
tion. Because the r/qS are linear functions of Oqs, r~i,s are also linear 
functions of cTi,s and dTi,s (Tables 9-11). 

Numerical example 

The computation of genotypic means and covariances 
in a two-breed population is illustrated for a two-locus 
model using a pedigree of six individuals (Fig. 6). Indi- 
viduals 1 and 3 are base individuals from breed A, and 
individual 2 is a base individual from breed B; thus they 
are assumed to be unrelated and noninbred. 

Consider a trait determined by two loci (U and V) 
with two alleles at each locus (U 1 and U 2, V 1 and V2). 
The genotypes, genotypic values (gjklm) and genotypic 
frequencies in breed groups A, B, and F 1 are in Table 12. 
The location parameters for this trait are #* = 5.91, 
/~* = 5.28, #3 = 4.64, #* = 5.7 and #* = 4.4, and the 
direct dispersion parameters are in Table 13. 

As the six individuals in this pedigree are from differ- 
ent breed groups, they have different genotypic means 
and variances. The genotypic means were computed 
directly by recursion without computing TIMS coeffi- 
cients, using principles similar to those for computing 
the genotypic covariances directly. They are: 5.91, 
4.64, 5.91, 5.28, 5.595 and 5.726, respectively, for the six 
individuals in Fig. 6. Genotypic means could also be 
computed from (8) using TIMS coefficients. Computa- 
tion of genotypic variances and covariances is described 
below. 

The non-zero c u, and d u, coefficients for the pedigree 
in Fig. 6 are in Tables 14, 15, and 16. Covariance be- 
tween relatives can now be computed by using (34). For  
example, the covariance between individuals 1 and 5 is 

Coy(G1, Gs) = 0.5(01 --  016 ) 

= 0.5(1.0458 - 0.2789) 

Table 12 Genotypes, genotypic values, and genotypic frequencies for 
the trait used in the numerical example. Frequency of U I is 0.3 in A 
and 0.4 in B, and frequency of 1/1 is 0.2 in A and 0.7 in B. For each 
locus, the paternal allele is given first 

Genotype Genotypic Genotypic frequency 
value 

U j U k VI Vm 9 jk lm A B F1 

U1U1V1V 1 2 0.0036 0.0784 0.0168 
U~ U1 V1 V2 3 0.0144 0.0336 0.0072 
U1U1V2V 1 3 0.0144 0.0336 0.0672 
U I U 1 V z V  2 4 0.0576 0.0144 0.0288 
U1 U21/11/1 4 0.0084 0.1176 0.0252 
U1U2V1V 2 5 0.0336 0.0504 0.0108 
U1U2V2V 1 5 0.0336 0.0504 0.1008 
U1U2V2V2 6 0.1344 0.0216 0.0432 
UzU1V1V 1 4 0.0084 0.1176 0.0392 
UzU1V1V 2 5 0.0336 0.0504 0.0168 
U 2 U 1V 2 V 1 5 0.0336 0.0504 0.1568 
U2UIV2V 2 6 0.1344 0.0216 0.0672 
UzU2VIV1 5 0.0196 0.1764 0.0588 
U2U2V1V 2 6 0.0784 0.0756 0.0252 
U2U2V2V 1 6 0.0784 0.0756 0.2352 
U2U2V2V2 7 0.3136 0.0324 0.1008 

Table 13 Dispersion parameters (0q) for the trait used in the numeri- 
cal example 

q Oq q Oq 

1 0.7818 16 0.2669 
2 0.5422 17 0.0000 
3 0.5716 18 -0.2682 
4 0.6156 19 0.0000 
5 0.6468 20 0.0000 
6 0.9500 21 0.2696 
7 1.3408 22 0.2564 
8 1.2376 23 - 0.2196 
9 1.6880 24 0.3944 

10 1.3786 25 0.2396 
11 1.2020 26 0.0000 
12 1.3560 27 -0.2388 
13 1.7312 28 -0.2994 
14 2.7864 29 0.0000 
15 3.3944 30 0.3032 

= 0.3834 

Fig. 6 Pedigree of six individuals used in numerical exampl e. Circles 
represent females, squares represent males. The breed of a founder is 
given by the letter within the square or circle 

@ 

+ 

because the non-zero identity coefficients are 
c~5 = dl 6 = 0.5 from Tables 14 and 16. 

Using (35), variance for inbred individual 6 is 

V a r ( G 6 )  = C o y ( G 6 ,  G6) 

= 0.6250~ + 0.2508 + 0.125014 - 0.3906016 

- -  0.0156022 + 0.156202s 

= 0 .625(1 .8568)  + 0 .25(1 .6516)  + 0 .125(2 .9244)  

- 0 .3906(0 .2789)  - 0 .0156(0 .3944)  

+ 0 .1562(0 .3146)  

= 1.7747 



Table 14 The non-zero c~i, 
coefficients for the pedigree in 
Fig. 6 

ii'/q 1 2 5 7 9 10 16 18 27 

11 0 0 0 1.000 0 0 0 0 0 
12 0 0 0 0 0 0 0 1.000 0 
13 0 0 0 0 0 0 1.000 0 0 
14 0 1.000 0 0 0 0 0 0 0 
15 0.500 0 0 0 0 0 0 0 0 
16 0.500 0.250 0 0.125 0 0.125 0 0 0 
22 0 0 0 0 1.000 0 0 0 0 
23 0 0 0 0 0 0 0 1.000 0 
24 0 0 1.000 0 0 0 0 0 0 
25 0 0 0.500 0 0 0 0 0.500 0 
26 0 0 0.250 0 0 0 0 0.625 0.125 
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Table 15 The non-zero cqi, 
coefficients for the pedigree in 
Fig. 6 (continued) 

ii'/q 1 2 4 7 8 10 11 14 16 25 

33 0 0 0 1.000 0 0 0 0 0 0 
35 0.500 0.500 0 0 0 0 0 0 0 0 
36 0.500 0 0 0 0 0 0 0 0.125 0.125 
44 0 0 0 0 1.000 0 0 0 0 0 
45 0 0.500 0.500 0 0 0 0 0 0 0 
46 0 0.375 0.125 0 0.125 0 0.125 0 0 0 
55 0 0 0 0.500 0.500 0 0 0 0 0 
56 0.250 0.250 0.250 0.125 0 0.125 0 0 0 0 
66 0 0 0 0.625 0.250 0 0 0.125 0 0 

Table 16 The non-zero di~i, coeff• for the pedigree in Fig. 6 

ii'/q 16 18 21 22 25 27 

11 1.0000 0 0 0 0 0 
12 0 1.0000 0 0 0 0 
13 1.0000 0 0 0 0 0 
15 0.5000 0 0 0 0 0 
16 0.6250 0 0 0 0.1250 0 
22 0 0 1.0000 0 0 0 
23 0 1.0000 0 0 0 0 
25 0 0,5000 0 0 0 0 
26 0 0.6250 0 0 0 0.1250 
33 1.0000 0 0 0 0 0 
35 0.5000 0 0 0 0 0 
36 0.6250 0 0 0 0.1250 0 
55 0.2500 0 0 0 0 0 
56 0.3125 0 0 0 0.0625 0 
66 0.3906 0 0 0.0156 0.1562 0 

b e c a u s e  the  n o n - z e r o  i d e n t i t y  coeff ic ients  a re  c~6 = 
~ 4 =  0.125, d 16 = 0.3906, a n d  d~ 2 = 0.625, c~6 = 0.25, c66 

0.0156, a n d  d26 s = 0.1562 f rom T a b l e s  15 a n d  16. 
The  m a t r i x  o f  g e n o t y p i c  c o v a r i a n c e s  be twe e n  ind i -  

v i dua l s  for  the  p e d i g r e e  in Fig .  6 was  c o m p u t e d  d i r ec t ly  
b y  r ecu r s ion ,  a n d  is g iven  in T a b l e  17. 

Conclusions 

This  p a p e r  desc r ibes  t h e o r y  a n d  m e t h o d s  to  c o m p u t e  
g e n o t y p i c  m e a n s  a n d  c o v a r i a n c e s  in a t w o - b r e e d  p o p u -  
l a t i o n  for  a d o m i n a n c e  m o d e l  m u l t i p l e  un l ike  loci.  The  
g e n o t y p i c  m e a n  is a l i nea r  func t ion  of  five l o c a t i o n  
p a r a m e t e r s  a n d  the  g e n o t y p i c  c o v a r i a n c e  b e t w e e n  re la-  
t ives is a l i nea r  func t ion  of  25 d i s p e r s i o n  p a r a m e t e r s .  

Table 17 Genotypic covariance matrix for the pedigree in Fig. 6 

Ind. 1 2 3 4 5 6 

1 1.0739 0.0000 0.0000 0.5422 0.2574 0.6696 
2 0.0000 1 .4184 0.0000 0 .6468 0.3234 0.1617 
3 0.0000 0.0000 1.0739 0.0000 0.5285 0.2574 
4 0.5422 0 .6468 0.0000 1.2376 0.5789 0.5852 
5 0.2574 0.3234 0 .5285 0 .5789  1.2225 0.7264 
6 0.6696 0 .1617 0.2574 0.5852 0.7264 1.3500 

Recur s ive  p r o c e d u r e s  a re  used  to  c o m p u t e  the  neces sa ry  
i d e n t i t y  coefficients .  

In  the  a bse nc e  of  i nb reed ing ,  the  n u m b e r  of  pa r -  
a me te r s  for  the  m e a n  is r e d u c e d  f rom five to  t h ree  a n d  
the n u m b e r  for  the  c o v a r i a n c e  is r e d u c e d  f rom 25 to 12. 
T h e  n u m b e r  of  p a r a m e t e r s  r e q u i r e d  m a y  be fu r the r  
r e d u c e d  b a s e d  on  the  s t ruc tu r e  of  the  p o p u l a t i o n .  
C o v a r i a n c e s  in a t w o - b r e e d  t e r m i n a l  c r o s s b r e e d i n g  sys- 
tem,  for  e x a m p l e ,  a re  func t ions  o f  n ine  gene t ic  d i s p e r s i o n  
p a r a m e t e r s .  T h e y  are  the  a d d i t i v e  v a r i a n c e  in b r e e d  A, 
the  d o m i n a n c e  v a r i a n c e  in b r e e d  A, the  a d d i t i v e  var i -  
ance  in b r e e d  B, the  d o m i n a n c e  v a r i a n c e  in b r e e d  B, the  
a d d i t i v e  v a r i a n c e  in F 1 of  a l M e s  i nhe r i t ed  f rom b r e e d  A, 
the  a d d i t i v e  v a r i a n c e  in F 1 of  al le les  i nhe r i t ed  f rom 
b r e e d  B, the  d o m i n a n c e  v a r i a n c e  in F1,  the  a d d i t i v e  
c o v a r i a n c e  b e t w e e n  a b r e e d  A p a r e n t  a n d  an  F1 off- 
spr ing ,  a n d  the  a d d i t i v e  c o v a r i a n c e  b e t w e e n  a b r e e d  B 
p a r e n t  a n d  an  F~ offspring.  The  c o v a r i a n c e  be tween  
p u r e b r e e d  A a n d  F 1 ha l fs ibs  used  b y  W e i  et al. (1991 a,b) 
is o n e - h a l f  the  a d d i t i v e  c o v a r i a n c e  b e t w e e n  a b r e e d  A 
p a r e n t  a n d  an  F~ offspring.  

A s s u m i n g  t ha t  g e n o t y p i c  va lues  a re  n o r m a l l y  d i s t r i b -  
u ted ,  the  l o c a t i o n  a n d  d i s p e r s i o n  p a r a m e t e r s  can  be  
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estimated by maximum likelihood. Further research, 
however, is needed to determine the amount of data 
required to obtain useful estimates. 

The theory presented here for computing genotypic 
means and covariances can be used to obtain genetic 
evaluations by best linear unbiased prediction (BLUP; 
Henderson 1973). The usual mixed-model formulation 
for BLUP requires the inverse of the genotypic 
covariance matrix. Efficient methods to invert this 
matrix have been presented for an additive model in a 
purebred population (Henderson 1976) and in a multi- 
breed population (Lo et al. 1993), and for a dominance 
model in a purebred population (Smith and M~iki- 
Tanila 1990; Hoeschele and VanRaden 1991). For a 
dominance model in a multibreed population, however, 
an efficient method to invert the covariance matrix has 
not been develoed. An alternative formulation for the 
mixed-model equations, which does not require the 
inverse of the covariance matrix, has been given by 
Harville (1976). This alternative formula may lead to a 
more efficient procedure to obtain BLUP for a domi- 
nance model in a two-breed population. 

In deriving the theory presented here, it was assumed 
that loci are unlinked. Robustness of the covariance 
theory for violation of this assumption was examined by 
computer simulation (Lo 1993). Results suggest that the 
effect of linkage on covariances may be negligible. 

The theory presented in this paper can be extended to 
include maternal effects and multiple traits, and for a 
multibreed population involving more than two breeds. 
If more traits and more breeds are involved, then addi- 
tional parameters will be required. 
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