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Abstract This paper presents theory and methods to
compute genotypic means and covariances in a two-
breed population under dominance inheritance, assum-
ing multiple unlinked loci. It is shown that the genotypic
mean is a linear function of five location parameters and
that the genotypic covariance between relatives is a
linear function of 25 dispersion parameters. Recursive
procedures are given to compute the necessary identity
coefficients. In the absence of inbreeding, the number of
parameters for the mean is reduced from five to three
and the number for the covariance is reduced from 25 to
12. In a two-breed population, for traits exhibiting
dominance, the theory presented here can be used to
obtain genetic evaluations by best linear unbiased pre-
diction and to estimate genetic parameters by maximum
likelihood.
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Introduction

Crossbreeding is used widely in animal production. One
of the main purposes of crossbreeding is to take advan-
tage of the heterosis that is often observed in crossbreds.
The primary genetic mechanism for heterosis is direc-
tional dominance of favorable alleles at many loci (Fal-
coner 1989). In the absence of inbreeding, theory is
available to model the mean in crossbred populations
(Dickerson 1973; Hill 1982; Eisen et al. 1983; Wei and
Van der Werf 1993). However, due to lack of theory,
genotypic variances and covariances have not been
modelled exactly in crossbred populations under domi-
nance inheritance (VanRaden 1992).

Alleles that are identical by descent (IBD) cause
genotypic values between relatives to be correlated
(Kempthorne 1954). Gillois (1964) and Harris (1964)
defined 15 “identity modes” concerning the IBD states
of four alleles in two individuals. Based on these
identity modes, a set of five genetic parameters and
its corresponding set of coefficients of identity were
derived to compute genotypic covariance between
purebred relatives under dominance inheritance (Gillois
1964; Harris 1964). Genotypic covariances between
purebred relatives is a function of these five genetic
parameters and their corresponding identity coeffi-
cients.

Harris (1964) gave recursive formulae to compute the
identity coefficients. Without computing identity coeffi-
cients, Smith and Miki-Tanila (1990) developed a recur-
sive procedure to compute genotypic covariance direct-
ly for purebred populations. These papers have been
discussed and extended by De Boer and Hoeschele
(1993).

The objective of this paper is to present theory for
modelling genotypic means and covariances in a popu-
lation composed of two pure breeds, A and B, and any
crosses involving these two breeds. Theory is derived
under a model with dominance inheritance and multiple
unlinked loci.
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Theory

Consider a genotypic model with n unlinked loci in a random-mating
two-breed population. It is assumed that the two pure breeds (4 and
B) are in gametic equillibrium. At locus ¢, let S¢ be the random allele
that individual i inherited from its sire j, and Tet D} be the random
allele that i inherited from its dam k. The paternal and maternal alleles
of sire Jjatlocus ¢ are S} and D% those of dam k are S} and D}. For
convenience, consider the F, as a reference breed group (AB). The
genotypic value of an individual in any breed group will be modelled
using effects defined for the F,. This model will be used to develop
theory to compute genotypic means and covariances for a two-breed
population in the presence of inbreeding.

Genotypic model

The genotypic value of individual i, G, is modelled as

Gi=p+ ), (os: + o+ dgipe)

t=1

=+ ), Gept ey
t=1
where:
u=E(G) @)

is the genotypic mean;

a5 =E(Gi|S) — 3
is the additive effect of paternal allele S5

ope = E(G,| D) — u “
is the additive effect of maternal allel D}; and

6S§D$ =E(G,|S5{Dy) — Xgt — Cpt — U %)
is the dominance effect for genotype S:D\. The expectations in (2)
through (5) are taken using allelic frequencies in the reference breed
group. Thus, in the F, additive and dominance effects will have null

expectations, and therefore Al% (Ggip) =0. Similarly, the genotypic

value for another individual i’ can be modelled as

Gy=p+ Z Gss,Dg, (6)

t=1

where ¢ and Gg: . are defined as for i.

Means

The genotypic value for an 1nd1v1dua1 iin any breed group, G;, can be
modelled as (1). The alleles S} and D} at locus ¢ each comes from either
breed A or B. Further, these alleles may be identical by descent (IBD)
or not. Specifying the breed origin and identity states for alleles S; and
D} results in a set of five two-breed identity modes for a single
individual (TIMS):

Ng: Sﬁ#Dﬁ, Sted,DieA
Sied, DteB

2!

N,. S'#£D;

. SieB,DieA

N,: Si#D;

Ns: Si#D,SeB,DeB

Ny S§i=D,SieA,DicA

N S;=D,SieB,DicB
where the symbol = denotes that alleles are IBD, # denotes that
alleles are not IBD, and € is used to denote the breed of origin of
alleles (F1g 1).For example N is defined as the mode where alleles S/
and D; are not IBD and are from breed A.

The expected value of G; from (1) can be written as

B(G)=p+ 3 E(Gspy)
=1

=pu+ _Z |:Z E(Gsfpf|n) } (N

where #, is the event that the identity state and breed origin for the set
of two alleles (Stand D ) belongs to identity mode N,, and p] is the
probability of n,. The p's will be referred to as TIMS coefficients.
Rearranging (7), "the genetic mean for individual i can be written as

5 n
E(G)=u+ Z P:|: z E(ngz)gmr)}
r=1

= t=1

5
=p+ ) ity

r=1

5
Z (n+u)p

5
= Z [ ®)

where p* = p+pu, =E(Gy|n,) for r=1,...,5 are the location par-
ameters for the two-breed population. Let A* be a population where
all individuals are homozygous at each locus with allelic frequencies
of pure breed A. Similarly, B* is defined to be a homozygous
population with allelic frequencies of pure breed B. Now, p7 is the
genetic mean for pure breed A4, 17 is the genetic mean for the AB breed
group, ui is the genetic mean for pure breed B, 1 is the genetic mean
forhomozygous breed 4*, and p¥ is the genetic mean for homozygous
breed B*. Then, the genotypic mean is a linear function of five TIMS
coeflicients and the corresponding location parameters.

Forinbred populations, these TIMS coefficients can be computed
using a recursive procedure as shown later. For noninbred popula-
tions, n,, n,, and n; are functions of the breed composition of the
parents as shown below. Note that identity modes N, and N5 do not
occur in noninbred populations.

Fig. 1 Identity modes N. Identical alleles are connected

Mode | Identity state Breed origin
N, 1St D} st D}
N1 o] [o] A A
Ny o o A B
Ny o o B A
Ny o o B B
N, o——o A A
Ng 00 B B




The probability that alleles S; and D} belong to mode N is

=132 ©)

where [ 4 s the breed 4 composition for the sire and £2is the breed A
composmon for the dam. Similarly, the probability that alleles S} and
D} belong to mode N, is

pi=fils+ oS4 (10)

where f3 is the breed B composition for the dam and f3 is the breed B
composition for the sire. The probability that alleles S; and D} belong
to mode N, is

p=f5fs- (11)

Covariances
The genotypic covariance between individuals i and i is

Cov(G;, G;) = E(G,G;) — E(G)E(G,).

The first term in (12), from (1) and (6), can be expressed as

E@@z%@+z%g@+zgwﬂ
t=1 =1

=1+ 1 Y [E(Gsip) + E(Gsepe) 1+ Y. E(Gipe Gt t)

t=1 t=1

+ 2 E(GypGsep): (13)

t=1r=1
274

For the second term of (12),

H@H@=F@+ZGMHF@+Z@MH
=1 t=1

= {:/J + 2 E(ngpf):I [N + 2 E(Gsﬁ,bg,):|

t=1 t=1

=p*+p Y [B(Gsip) + E(Gsp) 1+ Y B(Gyipe) E(Gie )

=1 t=1

+ 22 E(Gsip)E(Gyep).
t=1r=1
t#£1

(14)

Note that because breeds 4 and B are assumed to be in gametic
equilibrium and loci are unlinked, alleles at locus t in a crossbred are
distributed 1ndependently of those alleles at locus 7, ie,
Pr(S;, §5) = Pr(S! YPr(S)) (Lo etal 1993). Thus, E(Gs:ip:Gsip:) =
E( SzD)E(GstDz) and (12), or the difference between (13) and (14),
becomes

=1

(15)

At locust individualsiand i’ each has two alleles, St and D, and S},
and D. Bach allele comes from either breed A4 or B. To compute (15)
we must know the identity state for each pair of alleles, i.e., whether or
not the alleles are identical by descent (IBD), and the breed origin for
each allele.

It is convenient to start by showing how the first term of (15) is
computed when all four alleles are from the same population. For this
situation, Gillois (1964) and Harris (1964) have defined 15 possible
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cases of identity by descent, called “identity modes”, between alleles of
iandi"

I Si=S;#Di#D,S;=S,#D;
I, Di=D.#S;#S,,Di=D\#S,
Iy Si=D,#Di2S., S =D,#S.
Iy Di=S,#5,#D, D;=S.%#D,
I Si=S.£Di=D,
lg Si=D,#D;=S,
I Si=D;=S.+Di
Ig S;=Di=D,#S,
Iy Si=5,=D,#D:
D=5, =D#S,
I SfEDt-ESI»,EDf,

Iy Si#Di#S.#£D,Si#S,Di#D,
Iy ED?;és.,sD
Ly Si=Di#£S,#D,S:=D,#D.

—

15 Sy=Di#ES; $Dns" = D['/ $Dt'

where, for example 1 L is the mode where alleles S} and S}, are IBD but
not IBD to D} and D;, and D} and D}, are not IBD. This set of 151
identity modes is represented graphlcally in Fig. 2 (Jacquard 1974).
Gillois (1964) and Harris (1964) used these I identity modes to
compute the genotypic covariance between relatives in purebred
populations.

By ignoring the paternal or material origin of alleles, Harris (1964)
and Jacquard (1974) grouped the 15 I identity modes into a set of nine
J identity modes (Fig. 3):

Joelulplal, Jol,,
Jyils, I Joi,
Jyidg, I Jg:liy
Jolg 1, Joil s
Jsily

Fig. 2 Identity modes I. Identical alleles are connected

Alleles of 7 5;‘ o o D;f
Alleles of /' Sy e e D
O
I I I V
. . o—o0
I
[e} — o
el N R
L J *
Iy,
o e} (o] [s] . N
IS C\ IG >( Ig —\_ I12
* L ] L ] * .
o o
°© ° Irs
I, / Io A —e
L J

Source: Jacquard {1974])
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Fig. 3 Grouped identity modes J. Identical alleles are connected

At locus ¢, the first term of (15), B(Gs:p:Gy: pe), can be written as

E(Gs§D§ Gs&,p;,)
— E[Gep Gy (S5 Diy Sh D), 1P [(S} D} S5, Dijed 1 + -+
+E[Ggepe ng,D§,|(S;y D}, 8, D})eJ 1Pr[(S;, D}, S, Di)eJ o]

From Fig. 3, however, it can be seen that
E(Giipt Gt s (S5 DYy i, DyeJ 51 = B[ Gyepe G | (S5, Dy S3 Di)eJ ]
and
B(Giip Gt s (S5 Diy 83 Di)eJ 51 = E[ Gips Gy e (S5, Dy 3 Di)e o)
Thus, for the purpose of computing E(Gg:p: Gs;p3 ), it is not necessary
to distinguish between J; and J,, and between J and J,. Therefore,
the nine J identity modes can be further reduced to seven K identity
modes (Fig. 4):
K Jy Kjy:Js5,J,
K,:J, K, :Js

Fig. 4 Grouped identity modes K. Identical alleles are connected
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Now, we can use these seven K modes to define two-breed identity
modes for a pair of individuals (TIMPs) by specifying the breed origin
for the alleles in addition to their identity states.

Consider K, which consists of four I identity modes, with two
alleles IBD and two not IBD. The two IBD alleles are denoted C, |,
and the two not IBD are denoted F,, and F,,. Specifying the breed
origin for these alleles results in a set of eight L breed-specific identity
modes for K:

Ly: Cy€A,F, €A, F,eA
L,y Cy€A,F €A F,eB
Ly C,,€AFeB F,,e4
L, C,,eAF,,eBF,,eB
Ly C,eB,F €A F,eA
L, C,eB,F €A F,eB
L, C,,eB,FeBF ,cA
Ly C,,€B,F B F,,eB

which is summarized in Table 1. Note that by specifying the breed
origin for each allele

B[ Gyept Gy | (S5, Dy St Di)eLy] = E[ Grepr Gt s (S5, Dy Siu Di)e Ls ]

and

E [GS§D§ ng,ug, | (SE: Di-, S;’: D;/)ELs] =E [ngnf Gs@,v; | (SE’ Dﬁ, Sﬁr, DE/)EL'/] .
To compute E(Gs:pt Gst pt ), therefore, it is not necessary to distin-

guish between L, and L, and between Lg and L. Hence, the set of

eight L breed-specificidentity modes, L, to Lg, can be reduced to a set

of six TIMPs for K:

MLy

M,:L,, Ly

M;:L,

M,:Ls

Mg Lg, L,

Mg:Lg

which is also summarized in Table 1. Similarly, specifying the breed

origin for alleles IBD and alleles not IBD for K, through K ; results in
TIMPs M, through M, (Table 2-7).

Table 1 Identity modes L and M resulting from K. The two IBD
alleles are denoted C, ;, and the two not IBD are denoted F,; and F,,

M L Cu Fiy Fypy
M, L, A A A
M, L, A A B
M, L, A B A
M, L, A B B
M, Ls B A A
M, Le B A B
M, L, B B A
M, Ly B B B




Table 2 Identity modes Land M resulting from K ,. The two pairs of
IBD alleles are denoted C,, and C,,
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Table 6 Identity modes Land M resulting from K. The two pairs of
IBD alleles are denoted Cg,; and C,

M L € &P M L Ce1 Cez
M, Ly A A M;, Lys A A
M, L, A B M,, L, A B
My Ly, B A 23 Ly, B A

9 Ly, B B 24 Lig B B

Table 3 Identity modes L and M resulting from K. The three IBD
alleles are denoted C;,, and the one not IBD is denoted F 5,

M L Csy Fis

M, L, A A
11 L14 A B
12 L15 B A
13 LIG B B

Table 4 Identity modes L and M resulting from K. The four IBD
alleles are denoted C,;

M L

M14 L17
15 L

= >

18

Table 5 Identity modes L and M resulting from K 5. In K 5, there are
no alleles IBD. The two alleles from i are denoted F 5, and F, and the
two alleles from i’ are denoted F; and F,,.

M L Fy Fs, Fs, Fs4
M, L A A A A
M., Ly, A A A B
M., Ly, A A B A
M, L, A A B B
M,, L, A B A A
M,, L,, A B A B
M, L,s A B B A
M, Ly, A B B B
M., L, B A A A
M, L B A A B
M., Lo B A B A
M, Ly, B A B B
M, Ly, B B A A
M,, L, B B A B
M, L, B B B A
M, L, B B B B

Now, for locus ¢, the first expectation term in (15) can be written in
terms of M identity modes as

30
E(GSfo GSfo) = 2 E(GSin Gsin | mq) Pr(mq)

q=1

30
=Y &6 (16)
g=1

Table 7 Identity modes L and M resulting from K. The two IBD
alleles are denoted C,, and the two not IBD are denoted F,, and F,

M L Csy Fay Fo,
M, Lyo A A A
M, Lao A A B
M,, L, A B A
M, L, A B B
Mg L., B A A
M, L. B A B
M, Lys B B A
M, Ly, B B B

where m, is the event that the breed origin-identity state (BO-IS) for
the set of four alleles (S}, D, S}, D;) belongs to identity mode M,
(S;, D5, 8i. Di)eM,, ¢f, = Pr(m,), and

0, = B(Gsip: Gz pt | m,).

The cs are called “TIMP coefficients”.
For n unliked loci, the first term in (15) can be written as

n n 30
Z E(GS§D§GSE,D:,)= Z Z C?iﬁ;
r=1 t=1g=1
30 n
=) ch 2 A
g=1 t

1

30
=Y o, am
q=1

The 6s are the dispersion parameters for the two-breed population.
Note that for M, 5 through M ,,, none of the alleles in i is IBD to
an allele in i’ (Table 5 through 7 and Fig. 4). Thus for g =16,...,30

Y. E(Gsip: Gsipelmy) = 3. E(Gyupt|m,)E(Gat s Im,).
t=1

t=1
Further, recall that E(ngpg) =0 because F, was taken as the refer-

ence breed group. Therefore, from Tables 5 through 7, five s are null:

8172619:920=026=029=0' (18)
The first term of (15) can thus be written as a linear combination of 25
0s. A recursive procedure can be used to compute the TIMP coeffi-
cients, as shown later. For noninbred populations, dispersion par-
ameters can be reduced to a set of 12: 6, t0 64, 0,4, 0,4, and 6,,.



54

For a two-breed population, the expectation term E(Gg:py) in (15)
can be written in terms of TIMS as o

5
E(ngbg) = 2 E [(GS§D§) [#,1p;
r=1

5
=3 ¢y (19)
r=1
where ¢, = E [(Ggepedin,]-
For locus ¢, using (19), the second term of (15) is
5 5 )
E(Gsﬁng)E(Gsﬁ,DE,) = < Z P:¢:>< > Pl (bi)
r=1 r=1
5 5 ,
=Y X pipi o (20)
r=1vr=1

Recall thatr Ggpe was defined for the Fy breed group, where the
relationship between alleles is given by N, so that terms involving ¢,
in (20) are null. Thus, (20) can be written as

E(Goiop) Elseot) = p; i (90 + (9 0} + 17 p) 9195
+ 003 (95 + pipi (94
+(pipi + DipY)Oad’s + Pipi (5
+(pips + pipi) 90 + (p7pF + pip}) 050
+(p/pi + pips) 9105 + (0ipi + PP 5 (21)

For n unlinked loci, the second term of (15) from (21) is

n

E(Gsip) E(Gsepy) = pipr 3. (60 + ;03 +p7ps) T 615
t=1

t=1

tV1=

t=1

n

+pim Y (@5 +pir Y (94
t=1

t=1

n

+(pip; +0in) Y $uds +pipi Y (95
1 t=1

t=

+(pipt +0i00) Y, 91 0h
t=1

n

+(pip +ipi) Y. 950

t=1

+(pipi +pipi) Y, 0105
t=1

+(pipi +pipi) Y. 9305 (22)
t=1

Recall that M, is the mode where each allele in individuals
and ¢’ is independent and the alleles are from breed A4 (Table 5), and
that N, is the mode where the two alleles in an individual are
not IBD and both are from A. Thus E[(Gsip:Gsipy)lmye] =
E[(Gstp)1n, JEL(Gge )l n,], so that 7, (¢})* can be written as

n

¥ (81 = ¥, BUGsp) I JE[(Gszpe)lna]
t=1

t=1

Z E[( GS§D§ GSE,D;) [my6]
=1

(23)

916

which was defined before. Similarly,

Z ¢t1¢t3 = 018

o)
é (CAREY (25)
z( =0, 6)
/_Yl Gus =055 @7)
z (47 =64 e8)
él D195 =105 (29)
Zl P3ds =102 (30)
z A 61y
Y s =0s0 3

where 6,5 were defined previously. Now, the second term of (15) can
be expressed using the 0,5 as

n 30
x E(Gsip)E(Ggepr) = Y die,

=1 g=16

(33)

where from (22), d%s are products of TIMS coefficients:

16 1.1

4’ =pip; dif' = pip;

i’ =pip; +poips  dF =pipi +pimi

i =p;p; iy =pipi + pipi

&’ =pivs i’ =pipi +pips

A =pip; +pivs 4y =pip; +piDs

17 1 20 26 29
and where d)y =di) =d) =d; =di; =0

Subtracting (33) from (17) yields the coivariance between individ-
vals i and i"

n

E(Gsip:Gsint) — . E(Gsipd) E(Gizpg)

i t=1

=

Cov(G,,Gy) =

t

I

[
<

1

30
ch0,— > dib,

i

1 q=16

It

1

15 30
=Y b+ Y (ch—db)e, (34)
q=1

g=16

Thus, covariance between relatives in a two-breed population is a
function of TIMP coefficients, TIMS coeflicients, and 30 dispersion
parameters, five of which are null.

Variance
The variance, a special case of covariance, can be computed as

Var(G,) = Cov(G;, G;)



= > E(Gsp:Gsip) — Y. [E(Gsipt)]?
t=1 t=1

15
=) C;Iieq - (dili'6016 + dizi'1921 + dizi’zezz + dizf'q-@m)
q=1
because cf;=0 for g =16,...,30 (Tables 5 through 7, Fig. 4) and
df, =0for q #16,21,22, or 24 (equation 18 and Fig. 1).

(33

Recursive procedures

For purebred populations, identity coefficients between relatives
have been computed using recursive formulae (Harris 1964). Also,
covariance between relatives have been computed directly, without
computing identity coefficients, using a recursive procedure (Smith
and Maki-Tanila 1990).

For crossbred populations, it is shown below how to obtain
identity coefficients (c,), coefficients of breed origin (p}), and
covariance between relatives using recursive procedures. It is as-
sumed that individuals in the base populations are unrelated, nonin-
bred, and of known pure breed.

TIMP coefficients

Consider TIMP coefficient ¢ for two individuals i and i, c%. This is the
probability that alleles S;, D;, S;, and D}, belong to identity mode M,
Note that for individual i, allele S;is either allele S’ or D of sire j, with
equal probability. Thus ¢’ can be expressed recursively as

¢k =Pr[(S; D}, i, Dj)eM,]
=3Pr[(S}, D}, S, D})eM,]
+3Pr[(D}, D, S}, D})eM,]. (36)

This process will be referred to as “recursion of allele S¢”. Similarly,
allele D} is either allele S, or D;, of i's dam k, with equal probability. By
recursion on allele D, each of the two probabilities in (36) becomes

Pr{(S}, D, S, Dj)e M,] = 3Pr[(S}, S, Si, Di)e M, ]

+3Pr[(S}, D}, St, Diye M,] 37
and
Pr((D} D} S}, D)sM,] = Pe[(D} 53,51, Di)eM,]

+Pr[(D}. D}, S5, DY) M ] C9

Suppose now that ' is the sire of //, with paternal and maternal
alleles S, and D, and that ¥ is the dam of #, with paternal and
maternal alleles 5, and D, With equal probability, allele S is either
S, or D, of sire /' and allele D, is either S% or D', of dam k'. The
probabilities in (37) and (38), therefore, can be processed further by
recursion on alleles S} and D}. This recursive process is continued
until each of the four alleles is from a base population.

Recall that TIMPs specify the identity state and breed origin for
alleles, and that each individual in the base population is assumed to
be unrelated, noninbred, and of known pure breed; thus alleles of base
individuals are not IBD. Therefore, the probability that alleles from
base individuals belong to identity mode M, 4 18 either unity or null, as
can be seen from the following hypothetical example involving two
individuals.

Let 1 and 2 be base individuals from breed A. Consider comput-
ing, say, Pr[(S}, D}, S}, S5)e M, ]. Note that one of the first two alleles
is IBD to one of the second two alleles and that other alleles are not
IBD. This BO-IS belongs to M, (Table 1 and F._ 4), so that

1 for g=1
Pr[(S%,D,S", 8)eM =
[(8:. 0,51, 52)e M, ] 0 for g#1.
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Under Mendelian inheritance, alleles that an individual has in
common with any ancestor must also be present in at least one of its
parents. Following the rules given below ensures that the recursive
process is consistent with Mendelian inheritance:

(1) Number individuals in ascending order from oldest to youngest.
(2) Always recurse on an allele of the youngest individual.
(3) Recurse on identical alleles simultaneously.

For  example, consider the recursive process for
Pr[(S%, D, S5, Dg)e M, ]. By Rule2, recursion must be on allele D,
and by Rule 3, recursion on identical alleles D}, must be done
simulataneously. Suppose the dam of individual § is 3, with alleles S,
and D%. Then

Pr[(8%, D5, S5, Dy)e M, ] =3 Pr[(S5, S}, S5, S)eM,]
+3Pr[(S%, DY, S5, 85)e M, ).
Now, to illustrate the recursive computation of TIMP coefficient,
cf;, consider a pedigree of five individuals (Fig. 5)from a two-breed (4
and B) population. Assume individuals 1 and 2 are base individuals
from breed A and 4 is a base individual from breed B; thus they are
unrelated and noninbred. Consider, for example, computation of ¢2..
With equal probability, allele S of individual 5 is either S5 or D4 of
sire 3, and allele DY is either Sy or D) of dam 4. Thus, 25 can be
expressed recursively as
¢35 = Pr[(S5, D5, 85, D5)eM,]
=3 {Pr[(S5, D4, S5 DY)e M, ] + Pr[(S}, D5, Db, Ds)e M, 1}
= %{Pr[(st% Dg: t:’n SiL)EMZJ + Pr [( ga Dt37 t39 DE&)GMZJ
+ Pr[(S5, D5, S5, Sy)e M, ] + Pr[(S5, D5, Dy, Di)e M, . (39)
Note that alleles 5% and D} are from base individual 4; thus recursion
on these two alleles is not continued. Alleles S% and D, however, are
from non-base individual 3; thus recursion on these two alleles is
continued. Finally, ¢2, can be expressed as
CgS = 1_16{Pr[( tl: t23 Slla SEI»)EMZJ + PI'[( tl’ DlZ: tls SZ)EMZJ
+Pr[(D, 85, DY, Sy)eM, ] + Pr[(D}, D3, DY, Sk)e M,]
+ Pr{(Sy, 53, 8%, Die M,] + Pr[(}, Dy, 5%, Dy)eM, ]
+Pr[(D, 85, D, Di)e M, ] + Pr[(DS, Db, DY, DY)e M, ]

+ Pr[(85, 82, 5% Si)e M, 1 + Pr[(S}, D, D, Sh)e M,

Fig. 5 Pedigree of five individuals used in illustration of recursive
procedures. Circles represent females, squares represent males. The
breed of a founder is given by the letter within the square or circle

5,0, S3D;
S3 sio}
5

t At
SSDS
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+Pr[(D}, 85, S5, SYeM,] + Pr[(D}, D5, D, Su)e M, ]

+Pr((S}, 85,85, Dy)eM,] + Pr((S}, Dy, Dy, Di)e M, ]

+ Pr[(D}, 85, S5, Di)eM,] + Pr[(D}, Dy, D, Di)eM, 1}, (40)
Recall that identity mode M, has one of the first two alleles IBD to
one of the second two alleles and that the other two alleles are not
IBD, with the two IBD coming from breed A and the two not IBD
from breeds A and B (Table 1). Each of the 16 BO-IS combinations in
(40) belongs to M ,. Thus, each probability in (40} is unity, and ¢35 = 1.
Now for another example consider computation of TIMP coeffi-
cient c1 5- Note that alleles S and D', are from base individual 1; thus
recursion is not performed on these two alleles. Alleles S and DY,
however, are from non-base individual 5; thus recursion is perforrned
on these two alleles. With equal probabllxty, allele S% is either S or D},
of its sire 3, and allele D is either §’, or D', of its dam 4. Thus, ¢;; can
be processed recurs1vely until all alleles are from base individuals:

¢is = Pr[(S}, DY, S5, DY)eM ]

=5 {Pr[(S}, D}, 85 D5)e M, + Pr[(S}, D}, D, Di)e M, 1}

=2IPr[(S%, D', 5%, SiyeM ] + Pr[(S}, D', S5, Di)e M, ]
+Pr{(S,, D%, DY, Sie M ] + Pr[(S%, DY, Db, Diye M1}

=4 {Pr[(S}. D}, 8%, S)eM 1 + Pr[(S}, D}, D}, Si)e M, ]
+Pr[(S, D, S}, Di)eM ] + Pr[(S}, D}, DY, Die M, ]
+Pr[(S}. D}, S5, S)eM, 1 + Pr[(S}, D, Db, Sh)eM, ]
+ Pr[(S, D}, 85, Dye M ] + Pr[(S}, D}, D3, DY)

eM.]}. @1

None of the eight BO-IS comblnatlons in (41) belongs to M. Thus,
each probability i in (41) is null, and ¢} ; = 0.

To compute ¢’ 5, note that each of the first four combinations in
(41) belongs to M, and each of the last four combinations does not.

Thus, each of the first four probabilities in (41) is unity, each of the last
four probabilities is null, and ¢}, = 1.

TIMS coefficients

Recall that TIMS coefficients for individual i, p, is the probability
that alleles S; and D; belong to 1dent1ty mode N.. With equal
probablllty, allele Stis cither S or D of its sire j, and allele D\ is either
S, or D of its dam k. Thus, p; can be expressed recursively as

p; = Prl(S;
= 3{[Px(S),

D)eN,]
Dj)eN,] + [Pr(D}, D)eN,1}
=3 {[Pr(S}, SYeN,] + [Pr(S}, DY)eN,]

+ [Pr(D’, S)eN,] + [Pr(D}, D})eN,1}. 42)

This recursive process is continued until each allele is from a base
population. Rules 1 through 3 for computing the TIMP coefficients
must also be followed here.

To illustrate, consider the same pedigree that was used to compute
TIMP coefﬁc1ents (Fig. 5), with the same information and assump-
tions. Consider a coefficient of breed or1g1n for individual 3, p3. Wlth
ogual probablllty, allele S’ is either or D', ofits sire 1, and allele D,
is either S;, or D, of its darn 2. Thus p3 can be processed recurswely
until each allele 1s from a base population:

p; = Pr[(S5.D4)eN,]
=3{Pr[(s},
=3{Pr[(5}, SyeNJ+ Pr[(s}.D

DyeN,]+ Pr[(D},DY)eN i}
)ENx:l
SeN1}

+Pr[(D%.8)eN, ]+ Pr(D, D 43)

Each of the four BO-IS combinations in (43) belongs to identity mode
N,, where two alleles are not IBD and come from breed A4 (Fig. 1).
Thus each probability in (43) is unity, and p} = 1.

Covariance between relatives

Covariance between relatives can be computed as in (34) using TIMP
coeflicients (¢;;) and products of coefficients of breed origin (d;;)
obtained by recursion. We now compute the covariance between
relatives directly following a recursive procedure (Smith and Miki-
Tanila, 1990).

Consider the first expectauon term of (15) (GschGSt pt)- With
equal probability, allele S; is either S or D of its sire ;. Thus,
E(Ggip:Gs: ) can be expressed recurswely as
E(Gsip; Gyt pt) = 2[E(Gyyp: Gsee) + B(Gpepr Gisepe) 1. (“4)
Similarly, with equal probability, allele D is either S, or D}, of its dam
k. Thus, by recursion on allele D}, the two expectation terms in (44)
can be expressed as

E(nguﬁ ng,pg,) = % [E(Gs;s; Gs;pf,) + E(st.D; GS@D;)] (45)
and
E(Gpep: Gsipe) = 3[E(Gres: Gisee) + EGpspg Gepe) 1. (46)

Each expectation term in (45) and (46) can be processed recursively as
before until each allele is from a base population. Then, the BO-IS
combination for the four alleles with belong to one of 30 TIMPs. If the
BO-IS belongs to, say, M, then the expectation term, summed over n
loci, can be replaced by @,

Similarly, expectatlon terms E(Gsth)E(GS: pt) in (15) can also be
processed by recursion on alleles S; and D}, and’S} and Di:

E(Gyp9) Blstpt) = 76LE

+ E(GDj.s;c) + E(GD;D;)]

(Gsst) + E(Ggipt)

X [E(Gs;s;) + E(ng,z);(,)

+E(Gpese ) + E(GD;,D;)]- 7

The expectation terms in (47) can be processed recursively until
each allele is from a base population. Then the BO-IS combination
for the pair of alleles at a locus will belong to one of five N modes
(Fig. 1), and the product of expectations summed over n loci can be
replaced by 6_ as explained below.

Suppose, for example, the pair of alleles S; and S, are from base
populations and belong to mode N,, and the pa1r of alleles S and S,
are also from base populations and belong to N,. Thenforr=r'=1,
the product of E[(Gg: D)!n] and E[(GS: solm, ] summed over n locx
can be written as

Y. ElGsis)in E[(Gsisp)in ] = Y. El(Gset Gsysp)lmg ] =0, (48)
=1

t=1

with g = 16, because in M | the four alleles are independent and are
from breed 4, and in N, the two alleles are not IBD and are from
breed A. The relationship between all pairs of N modes and M modes
is in Table 8. Thus, for example, if r =1 and v =3, from Table §,
q=18,and (48)in 8, 4.

Toillustrate, consider the same pedigree that was used to compute
TIMP coefficients and TIMS coefficients (Fig. 5), with the same
information and assumptions. For example, covariance between
individuals 1 and 5 is
Cov(Gst pt Gt pt) = E(Ggtpt Gstpt) — E(Cstpt ) E(Gsepe)- (49)
Alleles S} and D} are from a base individual; thus recursion is not
performed on these two alleles. With equal probability, allele S5 is



Table 8 The relationship between pairs of N modes and M modes

N, N, N, N, N
Nl M16 M17 MIS MZS M28
NZ 17 M19 M20 M26 M29
N3 M18 MZO M21 M27 M3O
N4— 25 M26 27 M22 M23
NS 28 M29 30 M23 M24

either S} or D}, of its sire 3, and allele DY is either S} or D, of its dam 4.
Thus, the first expectation of (49) can be expressed recursively as

i[E(Gg e Ggrst) + B(Gse pr e pe)
+ E (Gt Gpest) + B(Gge e Gpe ) 1-

E(Gs‘,DE GS‘SD;) =
(50)

Alleles S, and D), are from base individual 4. With equal probablhty,
allele S, is either S or D' of its sire 1, and allele D', is either allele S, or
D' of i 1ts dam 2.

Thus expectatlons in (50) can be processed recursively on alleles S,
and DY, as

E(Gs:p: Gsipt) = §[B(Gs: e Gsist) + E(Gyt e Gest)
+ E(Gy:pt Gs: ) + (Gt pt Gt pt)
+ E(Gs:p: Gsi5) + E(Gyst s Gest)
+ E(Gg: ps G pe) + E(Gge pe Gpe e} 1.

Each of the first four BO-IS combinations belongs to M ,, where one
of the first two alleles is IBD to one of the second two alleles and the
other two alleles are not IBD, with the two IBD coming from breed 4
and the two not IBD from breeds A and B (Table 1). Thus each of the
first. four expectations in (51), summed over # loci, is replaced by 6,.
Also, each of the last four BO-IS combinations belongs to M ,, where
four aileles are not IBD, with one allele from breed B and the others
from breed A. Thus each of the last four expectations, summed over
the n loci, is replaced by 8, ,. Hence

(51)

"

Z B(Ggep: Gge ) = 200, + 017

1
=30,

because 6, =0 by (18).

Similarly, for the second term, E(Gs:p: ) in (49), alleles S’ and D
are already from a base populatlon so there is no need to recurse on
these alleles. For E(Gg: ), however, recursion on alleles of individuals
5 and 3 gives

E(GS’ED‘S) = E[E(ngpg) -+ E(Gpgpg)]
= %[E(ngsj) + E(ngpf,) + E(Gpgs;) + E(Gpgpi)]
= 5[E(Gsst) + E(Gpese) + E(Gyepe) + E(Gppe )

+E(Gsese) + E(Gpese) + E(Geep) + EGpgpg)]. (52)
Thus, the product of E(Gg: pe) and E(Gg: p:) gives
E(Gy:p) E(Gs: pe) = 5[E(Gis ) E(Gie) + E(Gige e E(Gpr )
+ E(Gg: p2)E(Ggepe) + E(Goep ) E(Gpe pe)
+ B(Gpe) E(Gest) + E(Ge pt) B(Gisr)
+ B(Gs:p)B(Gs:pt) + E(Gst o )E(Gpe ) 1- )

For each product of expectations in (53) note that, because one of the
pairs of alleles belongs to N,, each expectation summed over n loci
will be null. Finally, covariance between individuals 1 and 5 is

Cov(G,,Gs) =30,. (54)
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Genetic dispersion parameters

The dispersion parameters defined previously correspond directly to
the identity modes. Therefore, this led to a recursive method to
compute variances and covariances directly without computing
identity coefficients. These parameters will be referred to as the
“direct” dispersion parameters for a two-breed population. To give
genetic meaning to the variances and covariances in a two-breed
population, we show how to compute these using alternative par-
ameters that have a more direct genetic interpretation. These alterna-
tive parameters will be referred to as the “genetic” dispersion par-
ameters for a two-breed population.

Variance
Because loci are assumed to be unlinked and the pure breeds to be in

gametic equilibrium, the variance of any individual i in the two-breed
population can be written as

Var(G)) = Z ar(Ggp) (55
The above equation can be written as
Var(G Z EVar(Ggpyln,) + VarE(Ggypin,)] (56)

(Kempthorne and Folks 1971). The first term of (56) can be expressed
as

B Y Var(Gsuxln,) =pi Y. Var(Ggln,)
=1 =1

+p, Z Var(GStDz]nz)

=1

+pi Y. Var(Ggelns)

t=1

(57

where, for example, Z, 1Var(GstDzln )= (VA + V{) is the genotypic
variance in breed 4, V is the additive variance in breed A,and Vi is
the dominance variance in breed A. Similarly, the remaining vari-
ances in (57), summed over » loci, are genotypic variances for breed
groups, AB, B, A*, and B*. Therefore, (57) is

n

}? Z Var(Gsueln,)= (Vi + Vp) pi

+(VA%+ V% pt

+(VE+ VD) +@Vi +4Cey + Vo) pt

+(2Va +4C5, + V)PP (58)
where VT + V17 is the additive variance in the AB breed group, ViB
is the additive variance of breed A alleles in the AB breed group,
VAf 18 the additive variance of breed B alleles also in the AB breed
group, V5% is the dominance variance in the 4B breed group. V4isthe
addltlve variance in breed B, Vp is the dominance variance in breed B,
C4p is the covanance between additive and dominance effects in
breed A*, V4 is the dominance variance in breed A*, CB s the
covariance between additive and dominance effects in breed B*, Vi is
the dominance variance in breed B*. These genetic dlspcrswn par-
ameters can be written in terms of direct dispersion parameters (6s)
defined in the previous section. For example, consider the covariance
between individuals i and i’ gwen TIMP M,. Recall that M, is the
mode where only one allele in i is IBD to an allele in # and all alleles
are from breed A4 (Table 1). Thus, the covariance between i and i’ is
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half the additive variance in breed A. Also, from the definition of
covariance, this can be written as

n

Y. Cov(Gaep:Ggepelmy) = ), E(GsepeGsepsIm;)
t=1

n

- E(Ggeps|m ) E(Gg: ps I my)

t=1
=6, — 0.

Thus V4 = 2(0, — 01¢). For another example, consider the covariance
between i and i’ given TIMP M. Recall that M is the mode where
both alleles in i are IBD to the allelesin i’ and all alleles are from breed
A (Table 2). Thus, this covariance is the sum of the additive and
dominance variances in breed A. This can also be written as

n n
Z V{(Geps sy | 117) = > E{(Gstp: Gsipy | m4)
1= =1

- Z E(Gg:pil mYB(Gge pe |m5)

t=1
=0, — 0y

Thus Vi = 0, + 0,5 —20,. The relationship between these genetic
dispersion parameters and the direct dispersion parametersis given in
Table 9.

Now, the second term of (56) can be written as

Y VarE(Gspin,)
=1

= ¥ Var(#)
t=1

n

=) {El(¢)Y]1—[E

(@)1%}. (59)

Recall that ¢ = E(Ggspe|n,). Following Lo et al. (1993), (59) can be
rearranged as

Zwm@mprZ@%@f

The first sum in (60) is the contribution to the variance due to
differences in genotyplc frequenmes between breed groups A and AB.
This will be denoted V B and can be written in terms of the direct
dispersion parameters as

W”=§@ VS

(61)

Similarly, the second sum in (60) is the contribution to the
variance due to differences in genotypic frequencies between breed
groups A and B, and can be written as

- -

= Y () — 26105 +(¢5)°]

=1

=0,6—20,5+0,,. (62)

The remaining sums in (60) are contributions to the variance due
to differences in genotypic frequencies between breed groups A* and
A (V&4), B* and A(VE4), B and AB(VE48), A* and AB (V& 48),
B*and AB(VE45), A* and B(V#"5), B* and B(VE"®), and A* and B*
(V4B Now, (60} can be written as

n

Z arE (Gsipeln,) =

Vi Ppin: + Vitpip!

+ vV pint + v plp]

B,AB 2 3 A*,AB 2 4

D P; +VS plpl

+ Vs *Bpipl + vt pip!

+ Vg P plpl + Vi plpl.

+ Vg

(63)

The relationship between the genetic dispersion parameters in (63)
and the direct dispersion parameters is given in Table 10.
Note that, in some special cases (e.g., two-breed terminal cross-

=l =1 breeding system), differences in genotypic frequencies between breed
La groups will not contrlbute to the genetic variance. For example, the
+0ip; Y, (9 — 5 coefficient p; p? for Vg 5 is null in A because p? is null for individuals

t=1 from the A breed group.

These genetic dispersion parameters that contribute to the second
term of (56) result from differences in genotypic frequencies between
breeds. Note that, under additive inheritance, thg:re is an apalogoqs

] 60) contribution to the genetic variance due to differences in allelic
+ripi ,Z (94— 95 (60) frequencies between breeds (Lo et al. 1993).
Table 9 Genetic dispersion 4 . .
parameters (r,) that contribute 4 Fig Mg Relationship
to the first term of (56), and their A —
linear relationship to direct 1 ZC” + et el + 205 Vi 28, — 010)
dispersion parameters (6,). The 2 Cir Vb 6,—20, + 046
genetic identity coeﬁiments (r,,) 3 i+ V4B 05
are also linearly related to ¢l as 4 &+l y4iE 0,
shown here 5 & yan 0, — 0,0,
6 Seh+ el ey Vi 205 — 03)
7 Vs By — 204 + 62,
8 ci’ +4dciy Cip (010 —035) —2(6, —b16)
9 Vs (614 — 022) + 4(8, — O16) — 4(810 — 025)
10 ci +4ciy Chp (013 — 030) — 2(05 — 021)
11 ci’ Vs {015 — 024) + 405 — 021) — 4013 — 030)
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Table 10 Genetic dispersion . .
parameters (,) that }g)ntributde q rh g Relationship
an A,AB

o hesoond e of 00 nd Sy e Py
dispersion parameters (6,). The 13 - z( Cii — dii’ ) Vs~ 016+ 02; — 2018
genetic identity coefﬁments ) 14 2y — il V;;Ax 822 4 016 — 2025
age also hnear}l}y related to ¢, and 15 2(Czt? . d28) yEA B, + 016 — 2055
d}, as shown here 16 NS N U B L 7 0,,

17 ci1ir4 + B R i V;*’AB 0,5

18 i +on —dit v 1R 1 Ve 024

19 — 3t —di) v P 022+ 021 — 20,

20 3@ -’ ) v 624+ 021 — 203

2 —ler —d) v 035+ 024 — 262

Covariance

The covariance between individuals i and i’ in a two-breed population
can be written as

Cov(G, Gy = ), Cov(Ggipt, Gyt pt)

t=1
z COV GS‘D‘ GS”D‘ Im )

+ Z CmOV [E(GSQD; Img), B(Ggepe | my)].

t=1

The first sum of (64) can be written as

Z ECOV GS‘D‘ Gyt ps [ my) = Pr(m,) Y Cov(Ggsps, Gs@,D§,|m1)

= 1 t=1

+ Pr(m,) Z oV(Gepe, Gt pr | )

El

+ Primy,) Y, Cov(G

stpb Gt pt | M30)-
(65)

Recall that for M, ; through M, no allelein i is IBD to an allele in
i'. Thus, the last 15 sums in (65) are null. Each of the remaining sums in
(65) is a linear function of genetic dispersion parameters. Some of
these Jparameters also contribute to the variance in equanon (58) and
are given in Table 11. For example the first sum in (65) is half the
additive variance in breed A (V%) as seen earlicr.

The additional parameters that contribute only to the genotypic
covariance are addmve covarlance between a breed A parent and a
breed AB offspring (C4**), additive covarlance between a breed B
parent and a breed AB offspring (C2*%), covariance between the
dominance effect of a breed A* parent and the additive effect of an AB
offspring (C454"), and covariance between the dominance effect of a
breed B* parent and the additive effect of an 4B offspring (C42-5").
For example, recall that M, is the mode where only one allele in i is
IBD to an allele in 7. Also, for M, the IBD alleles and one that is not
IBD are from breed A, and the remaining allele is from breed B. Thus,
the second sum in (65) is the addmve covarlance between a breed 4
parent and a breed AB offspring (C %), Also, from the definition of
covariance, this can be written as

x Cov(Ggepe Gy pe lmy) = > E(GSQ); Gtz [m;,)
t=1

=1

-2 E(Ggpil M) E(Gge pe |m,)

t=1

=40,

because, Y_,B(Gsipt|m,)E(Gsipt|my) =0. Thus C5*% =0, The
relationship between these genetic dispersion parameters that con-
tribute only to the genotypic covariance and the direct dispersion
parameters is given in Table 11.

The second term in (64) can be written as

5" CovLE(Gssptlmy) E(Gs s m,)]
=1 Ma

Z [COV(E Gsipilng ), E(Gy:pelng )]

i 0V($} 6, (66)

where ¢, is the N mode that the set of alleles S} and D} belongs to and
g, is the N mode that the set of alleles S} and D belongs to when the
set of the four alleles belongs to M mode M, For example, ¢, = 1 and
g, =1 when m,=1. From the definition of covariance, (66) can be
written as

Y. Cov(@y,. d,.) = [Pr(ny, n) — Pr(n,) Pr(n)] Y, {¢'¢'}
=1 " # ' ! t=1
+Prlng ng —Pring Prng] Y (9405 (60

where, for example Pr,.(n,n,) is the joint probablhty that the set of
alleles S and D} belongs to N, and that the set Siand D}, belongs to
N, and Pr, (nl) is the marginal probability that the set 5% and D}
belongs to N,. Each of the sums in (67) can be written in terms of the
genetic d1spers1on parameters which are given in Table 10. For
example, from (61), the first sum in (67) is equal to VA e =0, Thus,
no additional parameters are requlred for the second term of (64).

Now, the genotypic covariance between i and i’ can be written in
terms of genetic dispersion parameters as

25
COV(Gia Gv,) = Z V?i'nq

=1

(68)

Table 11 Genetic dispersion parameters (1,) that contribute only to
the genotypic covariances, and their linear relationship to direct
dispersion parameters (9 )- The genetic identity coeflicients (%) are
also linearly related to c?, as shown here

q ¥ 1y Relationship
22 cf, + 2 ciB 0,

23 cir + 203 ci 0

24 cil oyl 8y, —26,

25 ol cisE 6,1, — 26,
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where 7,5 are the genetic dispersion parameters given in Tables 9-11,
and rs are the genetic identity coefficients for a two-breed popula-
tion. Because the 7,5 are linear functions of 8,5, #%s are also linear
functions of ¢%s and d%s (Tables 9-11).

i

Numerical example

The computation of genotypic means and covariances
in a two-breed population is illustrated for a two-locus
model using a pedigree of six individuals (Fig. 6). Indi-
viduals 1 and 3 are base individuals from breed A, and
individual 2 is a base individual from breed B; thus they
are assumed to be unrelated and noninbred.

Consider a trait determined by two loci (U and V)
with two alleles at each locus (U, and U,, ¥, and V,).
The genotypes, genotypic values (g,,,) and genotypic
frequencies in breed groups A, B, and F arein Table 12.
The location parameters for this trait are uf =591,
pk =528, u¥=4.64, pt =57 and p¥ =44, and the
direct dispersion parameters are in Table 13.

As the six individuals in this pedigree are from differ-
ent breed groups, they have different genotypic means
and variances. The genotypic means were computed
directly by recursion without computing TIMS coeffi-
cients, using principles similar to those for computing
the genotypic covariances directly. They are: 5.91,
4.64,5.91,5.28,5.595 and 5.726, respectively, for the six
individuals in Fig. 6. Genotypic means could also be
computed from (8) using TIMS coefficients. Computa-
tion of genotypic variances and covariances is described
below.

The non-zero ¢;; and d;; coefficients for the pedigree
in Fig. 6 are in Tables 14,15, and 16. Covariance be-
tween relatives can now be computed by using (34). For
example, the covariance between individuals 1 and 5 is

Cov(Gy,Gs5)=0.5(8; — 04)
=0.5(1.0458 — 0.2789)
=0.3834

Fig. 6 Pedigree of six individuals used in numerical example. Circles
represent females, squares represent males. The breed of a founder is
given by the lerter within the square or circle

)

Table 12 Genotypes, genotypic values, and genotypic frequencies for
the trait used in the numerical example. Frequency of U, is 0.3 in 4
and 0.4 in B, and frequency of V, is 0.2 in 4 and 0.7 in B. For each
locus, the paternal allele is given first

Genotype Genotypic  Genotypic frequency
value

U,u v, 9ixim A B F,
Uuu vy, 2 0.0036 0.0784 0.0168
U, u,viv, 3 0.0144 0.0336 0.0072
Uuuv,V, 3 0.0144 0.0336 0.0672
U,U,v,v, 4 0.0576 0.0144 0.0288
UU ViV, 4 0.0084 0.1176 0.0252
U, U,V V, 5 0.0336 0.0504 0.0108
U U,V 5 0.0336 0.0504 0.1008
U,U,V,V, 6 0.1344 0.0216 0.0432

LU VLIV, 4 0.0084 0.1176 0.0392

RAARS 5 0.0336 0.0504 0.0168
U,u,v,V, 5 0.0336 0.0504 0.1568
u,u,v,v, 6 0.1344 0.0216 0.0672
U,u,v, v, 5 0.0196 0.1764 0.0588
U,u,v,v, 6 0.0784 0.0756 0.0252
U,U,V,V, 6 0.0784 0.0756 0.2352
U, U, V,V, 7 0.3136 0.0324 0.1008

Table 13 Dispersion parameters (6,) for the trait used in the numeri-
cal example

q 8, q 6,
1 0.7818 16 0.2669
2 0.5422 17 0.0000
3 0.5716 18 —0.2682
4 0.6156 19 0.0000
5 0.6468 20 0.0000
6 0.9500 21 0.2696
7 1.3408 22 0.2564
8 1.2376 23 —0.2196
9 1.6880 24 0.3944
10 1.3786 25 0.2396
11 1.2020 26 (.0000
12 1.3560 27 —0.2388
13 1.7312 28 —0.2994
14 2.7864 29 0.0000
15 3.3944 30 0.3032
because the non-zero identity coeflicients are

cls=di¢=0.5 from Tables 14 and 16.
Using (35), variance for inbred individual 6 is

Var(Gg) = Cov(Gg, Gg)
=0.6250, + 0.250, +0.1250,, — 0.39060
—0.01560,, + 0.15620,
=0.625(1.8568) + 0.25(1.6516) + 0.125(2.9244)
—0.3906(0.2789) — 0.0156(0.3944)
+0.1562(0.3146)

= 1.7747
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Table 14 The non-zero cf,

coefficients for the pedigree in % C 2 > 7 9 10 16 18 27
Fig. 6 1m0 0 0 1000 0 0 0 0 0
12 0 0 0 0 0 0 0 1.000 0.
13 0 0 0 0 0 0 1.000 0 0
14 0 1.000 0 0 0 0 0 0 0
15 0.500 0 0 0 0 0 0 0 0
16 0.500 0.250 0 0.125 0 0.125 0 0 0
22 0 0 0 0 1.000 0 0 0 0
23 0 0 0 0 0 0 0 1.000 0
24 0 0 1.000 0 0 0 0 0 0
25 0 0 0.500 0 0 0 0 0.500 0
26 0 0 0.250 0 0 0 0 0.625 0.125
Table 15 The non-zero cf ”
coefficients for the pedigree in irfg 1 2 4 7 8 10 11 14 16 25
Fig. 6 (continued) 30 0 0 1000 0 0 0 0 0 0
35 0.500 0.500 0 0 0 0 0 0 0 0
36 0.500 0 0 0 0 0 0 0 0.125 0.125
44 0 0 0 0 1.000 0 0 0 0 0
45 0 0.500 0.500 0 0 0 0 0 0 0
46 0 0.375 0.125 0 0.125 0 0.125 0 0 0
55 0 0 0 0.500 0.500 0 0 0 0 0
56 0.250 0.250 0.250 0.125 0 0.125 0 0 0 0
66 0 0 0 0.625 0.250 0 0 0.125 0 0

Table 16 The non-zero d?. coefficients for the pedigree in Fig. 6

Table 17 Genotypic covariance matrix for the pedigree in Fig. 6

ii'/q 16 18 21 22 25 27 Ind. 1 2 3 4 5 6

11 1.0000 O 0 0 0 0 1 1.0739  0.0000 0.0000 0.5422 0.2574  0.6696
12 0 1.0000 0 0 0 0 2 0.0000 14184  0.0000  0.6468 03234 0.1617
13 1.0000 0 0 0 0 0 3 0.0000  0.0000 1.0739  0.0000 05285 0.2574
15 0.5000 O 0 0 0 0 4 0.5422 0.6468 0.0000 1.2376 0.5789 0.5852
16 0.6250 0 0 0 0.1250 0 5 0.2574 0.3234  0.5285  0.5789 1.2225  0.7264
22 0 0 1.0000 © 0 0 6 0.6696 0.1617 02574 05852 0.7264 1.3500
23 0 1.0000 0 0 0 0

25 0 05000 0 0 0 0

26 0 06250 0 0 0 0.1250

;g (1)'(5)888 0 8 8 8 8 Recursive procedures are used to compute the necessary
36 0.6250 0 0 0 0.1250 0 identity coeflicients.

55 0.2500 0 0 0 0 0 In the absence of inbreeding, the number of par-
56 03125 0 0 0 0.0625 0 ameters for the mean is reduced from five to three and
66 03906 O 0 0.0156 0.1562 0

because the non-zero identity coefficients are ¢}
0.625, c3s=0.25, ct¢=0.125, dL¢ =0.3906, and d?
0.0156, and d2; = 0.1562 from Tables 15 and 16.

The matrix of genotypic covariances between indi-
viduals for the pedigree in Fig. 6 was computed directly
by recursion, and is given in Table 17.

[
2
6

Conclusions

This paper describes theory and methods to compute
genotypic means and covariances in a two-breed popu-
lation for a dominance model multiple unlike loci. The
genotypic mean is a linear function of five location
parameters and the genotypic covariance between rela-
tives is a linear function of 25 dispersion parameters.

the number for the covariance is reduced from 25 to 12.
The number of parameters required may be further
reduced based on the structure of the population.
Covariances 1n a two-breed terminal crossbreeding sys-
tem, for example, are functions of nine genetic dispersion
parameters. They are the additive variance in breed A,
the dominance variance in breed A4, the additive vari-
ance in breed B, the dominance variance in breed B, the
additive variance in F of alleles inherited from breed A4,
the additive variance in F, of alleles inherited from
breed B, the dominance variance in F,, the additive
covariance between a breed A parent and an F, off-
spring, and the additive covariance between a breed B
parent and an F, offspring. The covariance between
purebreed 4 and F, halfsibs used by Weiet al. (1991 a,b)
is one-half the additive covariance between a breed 4
parent and an F, offspring.

Assuming that genotypic values are normally distrib-
uted, the location and dispersion parameters can be
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estimated by maximum likelihood. Further research,
however, is needed to determine the amount of data
required to obtain useful estimates.

The theory presented here for computing genotypic
means and covariances can be used to obtain genetic
evaluations by best linear unbiased prediction (BLUP;
Henderson 1973). The usual mixed-model formulation
for BLUP requires the inverse of the genotypic
covariance matrix. Efficient methods to invert this
matrix have been presented for an additive model in a
purebred population (Henderson 1976) and in a multi-
breed population (Lo et al. 1993), and for a dominance
model in a purebred population (Smith and Méki-
Tanila 1990; Hoeschele and VanRaden 1991). For a
dominance model in a multibreed population, however,
an efficient method to invert the covariance matrix has
not been develoed. An alternative formulation for the
mixed-model equations, which does not require the
inverse of the covariance matrix, has been given by
Harville (1976). This alternative formula may lead to a
more efficient procedure to obtain BLUP for a domi-
nance model in a two-breed population.

In deriving the theory presented here, it was assumed
that loci are unlinked. Robustness of the covariance
theory for violation of this assumption was examined by
computer simulation (Lo 1993). Results suggest that the
effect of linkage on covariances may be negligible.

The theory presented in this paper can be extended to
include maternal effects and multiple traits, and for a
multibreed population involving more than two breeds.
If more traits and more breeds are involved, then addi-
tional parameters will be required.
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